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Abstract: This paper aims at providing a simplified analytical solution for functionally graded beam
stress analysis and optimized material gradation on the beam deflection. The power-law (P-FGM)
and exponential (E-FGM) material functions were considered for an exact solution of the normal and
shear stress distributions across the beam thickness. Optimization of material function on the FGM
beam deflection, which is new of its kind, was also investigated considering both simply supported
and cantilever beams. It was observed that the non-dimensional normal stress and shear stress are
independent of the elastic moduli values of the constituent materials but rather depends on both
the ratio of the elastic moduli and the location across the beam thickness in the E-FGM material
function model. This observation was first validated from available kinds of literature and through
numerical simulation using ABAQUS and extended to the P-FGM stress analysis. The maximum
deflection on the FGM beam occurred for a homogenous steel beam while the minimum deflection
was observed on the beam with a P-FGM material function. The results of this work demonstrate
that if properly designed and optimized, FGMs can provide an alternative material solution in
structural applications.

Keywords: functionally graded material; volume fraction; normalized stress; material functions

1. Introduction

Functionally graded materials (FGMs) are a new class of advanced composite materials
that possess gradually varying material properties within a given direction. FGMs can be
manufactured by varying the constituent multi-phase of two or more parent materials in a
predetermined profile. This gradation can be achieved by either combining two or more
materials using volume fraction or by treating a single material chemically to change its
initial properties. The functionally graded composite material will then have a different and
unique property while preserving benefits from individual parent materials. Considered
as the “holy grail” of composite materials, in the last three decades, FGMs have been
extensively been used in areas of aerospace, medicine, defense, energy, and optoelectronics
industries [1] while their application as a structural component is still in its infancy.

Many studies on FGM beams subjected to mechanical and thermal loading are avail-
able in the literature. The first attempt on an elasticity solution of FGM beams subjected to
static transverse loads was proposed in [2] assuming the beam properties to vary through-
thickness following an exponential law. A new beam finite element analysis was developed
in [3] and investigated the thermo-elastic behavior of functionally graded beam structures
based on first-order shear deformation theory and accounting for varying elastic and ther-
mal properties along with the beam thickness. A combined Fourier series and Galerkin
method for solving the two-dimensional elasticity equations for a functionally graded beam
subjected to transverse loads using a polynomial function to account for the variation of
Young’s modulus through the beam thickness was reported in [4]. Finite element method
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for characterizing the dynamic free vibration of a functionally graded beam with material
graduation axially or transversely through the thickness based on the power-law function
and a finite element method to study the static behavior of Timoshenko FGM cantilever
beam subjected to a concentrated load at the free end and using power law for varying
material properties through-beam thickness was investigated and proposed in [5,6]. The
static behavior of functionally graded metal-ceramic beams under transverse loading using
higher-order shear deformation theory, assuming power-law function to account for mate-
rial variation through-beam thickness was studied in [7]. Nonlinear bending approximate
solution of FGM beam was reported in [8] using higher-order shear deformation theory and
based on beam physical neutral surface. The beam material properties were assumed to be
temperature-dependent and vary through-thickness. The exact free vibration and buckling
analysis of tapered beam-column made of FGM material and assumed the P-FGM material
variation along with the cross-section’s height and the vibration behavior of composite
coupled conical shell structures were presented in [9–11]. FGM beam bending solution for
Timoshenko beams compared with those of Euler-Bernoulli beams is also presented in [12].
Deformation analysis of functionally graded beams by using a direct approach and linear
bending of FGM beams by the differential quadratic method were investigated in [13,14].
A new insight on the potential application of FGM for an extreme environment such as for
fire protection was presented in [15,16]. There has also been a significant interest in FGM
plate analysis through both analytical and finite element investigation such as in [17–20].
Literature on FGM beams under arbitrarily distributed loading, crack growth, and bilayer
FGM cantilever beams are also available in [21–23].

Even though there are numerous kinds of literature on FGM beam analysis, many only
focus on the FE method of analysis and use only E-FGM material models in the analysis.
Thus, this paper aims to provide a simplified method and solution for FGM beam normal
and shear stress analysis considering two material functions, power-law (P-FGM) and
exponential (E-FGM). Also, the influence of material functions on FGM beam deflection
was investigated through analytical solution considering simply supported and cantilever
FGM beams which exhibited a smaller deformation compared with homogenous steel
beams of the same size and similar loadings. The results and observation from this study
would make it easier for practicing engineers on understanding the stress distribution
through FGM beam thickness and lead to better choice in material selection.

2. Mechanical Properties of Functionally Graded Materials

FGMs are advanced composite materials with a mixture of ceramic and metal or a
combination of different metals made by gradually varying the volume fraction of the
constituent materials. The functionally graded material can be continually produced by
varying the constituent multi-phase materials in a predetermined profile. The constitutive
material property which varies with a given direction is expressed using volume fraction
variation. This volume fraction variation can be described using the power-law function,
sigmoid function, or exponential function.

2.1. Power-Law Material Function (P-FGM)

The volume fraction variation of the FGM beam in the power-law function can be
expressed with Equation (1) within a given direction, where z is any point within a given
direction, h is the total thickness (width), and n is a power-law index parameter.

f(z) =
(

z + h/2
h

)n
(1)

f(z) is the variation of volume fraction for one of the two constituent materials making
up the FGM matrix. This means the second material will have a volume fraction of 1 − f(z)
at a given location across a thickness (if the desired graduation is within a thickness
direction). It can also be noticed that for every power-index value (n) considered, the FGM
matrix will have 100% of one material at the top and 100% of the second material at the
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bottom of the beam cross-section. Once the local volume fraction is defined, the functional
relation of material properties at any point across the thickness can be expressed according
to the general rule of mixtures. The Young’s modulus variation E(z) within beam thickness
for P-FGM can be calculated by using Equation (2).

E(z) = E1f(z) + (1− f(z))E2 (2)

where E1 and E2 are Young’s moduli of the FGM at the bottom (h/2) and top (−h/2) surfaces.

2.2. Sigmoid Material Function (S-FGM)

Chung and Chi [24] developed volume fractions using two power-law functions to
create a smooth distribution of stresses among all interfaces wherein the case of adding
an FGM of a single power-law function to multi-layered composite, stress concentration
appears on one of the interfaces [25]. The volume fraction variation of FGM in sigmoid
function can be expressed with Equations (3) and (4) along the thickness direction which is
divided into two parts of the FGM thickness. The parameter (p) designates a parameter-
index in S-FGM.

f1(z) = 1− 1
2

(
h
2 − z

h
2

)p

for 0 ≤ z ≤ h
2 (3)

f2(z) =
1
2

(
h
2 + z

h
2

)p

for −h
2 ≤ z ≤ 0 (4)

The Young’s modulus variation in the S-FGM can be calculated using a similar
expression as P-FGM but uses volume fraction for each part separately as shown in
Equations (5) and (6).

E(z) = f1(z)E1 + [1− f1(z)]E2 for 0 ≤ z ≤ h
2 (5)

E(z) = f2(z)E1 + [1− f1(z)]E2 for −h
2 ≤ z ≤ 0 (6)

2.3. Exponential Material Function (E-FGM)

The exponential function is the most used FGM material function among many re-
searchers due to its simplicity in obtaining analytical solutions and the only parameter
is the natural logarithm of the ratio of elastic modulus of the two materials considered.
Equation (7) is used to describe the variation of elastic modulus in E-FGM.

E(z) = E2eβz (7)

where β = 1
h ln(E1

E2
).

The young’s modulus variation within the FGM beam thickness for P-FGM and
E-FGM material functions is presented in Figure 1.
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3. Analytical Approach to FGM Beam Analysis

A simplified analytical formulation for functionally graded beam stresses analysis is
presented in this section. The material properties in the FGM beam were assumed to vary
in the thickness direction using power-law (P-FGM) and exponential function (E-FGM)
material functions.

The Mathematical Formulation for FGM Beam Analysis

Consider a functionally graded beam with a rectangular cross-section shown in
Figure 2 with length L, width b, and depth h. To simplify the FGM beam stress anal-
ysis, the following assumptions were made: (1) FGM beam is modeled with classical
Euler-Bernoulli beam theory, where mid-plane remains undeformed; (2) Poisson ratio
is assumed constant along with the beam thickness; and (3) normal stress in z-z axis
is neglected.
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The axial and transverse displacement fields can be expressed as in Equation (8),
which are derived from [3].

u(x, z) = u0(x) + zφ(x) w(x, z) = w0(x) (8)

where ∅ is the first derivative of the transverse displacement.
The constitutive relation of the FGM beam can be assumed to obey Hook’s law and

can be written as

{σ} =
{

σxx
τxz

}
=

[
E(z) 0

0 G(z)

]{
εxx
γxz

}
(9)

where σxx and εxx are normal stresses and normal strains in the x-direction and τxz and γxz
are the shear stress and shear strain in the x-z plane. E(z) and G(z) are the Young’s and
shear moduli, which are functions of the FGM beam depth z.

The axial strain can be expressed using Equation (10).

εx = εx0 + zκ (10)

where εx0, κ and z are the normal strain at mid-plain, the curvature, and the distance from
the neutral axis of the FGM beam. Using the Euler-Bernoulli beam theory, the resultant
axial force (N) and bending moment (M) can be evaluated using Equations (11) and (12).

N =
∫

σxdA (11)

M =
∫

zσxdA (12)

Substituting Equations (9) and (10) into Equations (11) and (12), the resultant forces
can be expressed including the material variation through the beam thickness.

N =
∫

E(z)(εx0 + zκ)dz (13)
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M =
∫

zE(z)(εx0 + zκ)dz (14)

Equations (13) and (14) can further be related using the matrix form below[
N
M

]
=

(
K1 K2
K2 K3

){
εx0
κ

}
(15)

where K1, K2 and K3 are stiffness coefficients and can be expressed as

K1 =
∫

E(z)dz (16)

K2 =
∫

zE(z)dz (17)

K3 =
∫

z2E(z)dz (18)

The inverse relation for Equation (15) can be written as{
εx0
κ

}
=

(
K1 K2
K2 K3

)−1[ N
M

]
=

(
K1
∗ K2

∗

K2
∗ K3

∗

)[
N
M

]
(19)

where K1
∗, K2

∗ and K3
∗ are the inverse stiffness coefficients.

K1
∗ =

K3

K1K2 −K22 (20)

K2
∗ =

−K2

K1K2 −K22 (21)

K3
∗ =

K1

K1K2 −K22 (22)

Since the axial force resultant N = 0; the strain at mid-plane and the curvature can
have the form

εx0 = K2
∗M(x) (23)

κ = K3
∗M(x) (24)

Substituting Equations (23) and (24) into Equation (10) and then into Equation (9) the
axial stress distribution across the FGM beam thickness at any location (x) when subjected
to M(x) can be obtained as:

σxx(x, z) = K3
∗E(z)M(x)

(
K2
∗

K3∗
+ z
)

(25)

Since the axial stress is zero at the FGM beam N.A., one can recognize that the N.A.
for the FGM beam is located at

z = −K2
∗

K3∗
(26)

The transverse shear stress can be obtained by integrating the equilibrium equation

∂σxx

∂x
+

∂τxz

∂z
= 0 (27)

An expression for the shear stress at a distance z can be obtained as:

τxz(x, z) = −
z∗∫

0,h/2

∂σxx

∂x
dz (28)
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Substituting the axial stress expression in Equation (25) into Equation (28), one can
obtain the FGM shear stress distribution across the beam thickness.

τxz(x, z) = −
z∗∫

0,h/2

∂
[
K3
∗E(z)M(x)

(
K2
∗

K3
∗ + z

)]
∂x

dz (29)

It should be noted from the limit of integration in Equation (29) that, depending on
the material function, one can choose the reference axis for material variation in the FGM
beam. The shear stress distribution can further be simplified as Equation (30). Where Vz is
the resultant shear force at a given location along beam length.

τxz(x, z) = −Vz

 z∗∫
0,h,2

(K2
∗E(z) + zK3

∗E(z))dz

 (30)

4. Results and Discussion

The results from a simplified analytical formulation for functionally graded beam
normalized axial and shear stresses distributions are presented in detail in this section. The
material properties in the FGM beam were assumed to vary in the thickness direction using
power-law (P-FGM) and exponential function (E-FGM) material functions. The FE model
was also conducted using ABAQUS and some of the results obtained were validated by
comparing with those kinds of literature. Young’s modulus for metal (E1) and ceramic (E2)
considered were 210 GPa (29500-ksi) and 390 GPa (55114-ksi), respectively. The Poisson
ratio was assumed to be constant for each layer with a value of 0.3 as suggested in [2].

4.1. Exponential Function FGM Beam

The material function in the E-FGM beam is expressed using Equation (7). Explicit ex-
pressions for FGM beam stiffness coefficients can be solved by integrating Equations (16)–(18)
using the limit of integration from 0 to z where E1 and E2 are the elastic moduli of the FGM
beam at the (z/h = 0) and (z/h = 1).

K1 =
h(E1 − E2)

ln
(

E1
E2

) (31)

K2 = −
(

h2(E1 − E2)− E1h2 ln(
E1

E2
)

)
/
(

ln(
E1

E2
)

)2
(32)

K3 =

(
2h3(E1 − E2)− 2E1h3 ln(

E1

E2
) + E1h3 ln (

E1

E2
)

2
)

/
(

ln(
E1

E2
)

)3
(33)

Substituting the inverse of stiffness coefficients and E(z) one can obtain the axial
normal stress and shear stress distributions across E-FGM beam thickness normalized
to the normal stress at beam top-end and average shear stress for normal and shear
distribution respectively.

4.1.1. Axial Stress Distribution in E-FGM Beam

The axial stress distribution across the FGM beam thickness at any location (x) when
subjected to M(x) for any applied load can be obtained using Equation (25) and the corre-
sponding results are presented in Figure 3. It can be observed that the non-dimensional
normal stress is independent of the actual elastic moduli values, but rather depends on the
ratio of E1/E2 and the location across the beam thickness (z). This means that, regardless
of the material types, the normalized stress distribution is mainly influenced by the ratio
of the elastic moduli of constituent materials. From the stress distribution, it can also be
observed that the normal stress is zero at z/h = 0.5 for E1/E2 = 1.0, at about z/h = 0.672,
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z/h = 0.625, z/h = 0.444, and z/h = 0.3275 for E1/E2 = 10, E1/E2 = 5, E1/E2 = 0.5, and
E1/E2 = 0.1 respectively. These points also correspond to the neutral axis locations for the
FGM beam.
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4.1.2. Shear Stress Distribution in E-FGM Beam

Similarly, the shear stress distribution in the FGM beam was evaluated using Equation (30).
From the normalized shear stress distribution, as shown in Figure 4, it is evident that the
maximum normalized shear stress is in the neutral axis locations for each E1/E2 considered.
Moreover, the normalized shear stress is 1.5 times the average shear stress for E1 = E2,
which is consistent with the classical beam theory. However, this maximum ratio is 1.68,
1.55, 1.49, and 1.62 for E1/E2 = 10, E1/E2 = 5, E1/E2 = 0.5, and E1/E2 = 0.1, respectively.
This observation implies that an FGM beam could withstand more shear stress than a
homogenous and isotropic beam.
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To validate the results presented above for E-FGM beam axial stress, a numerical
simulation was performed using ABAQUS and compared with results from [2] and [26].
The FGM beams were modeled in ABAQUS with a step-wise material gradation from
ceramic at top of the beam (Ec = 390 MPa) to steel (Es = 210 MPa) using 16-layers (6.25 mm
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thick each layer) across the 10 cm thickness of the beam where each layer is assumed to be
isotropic and homogenous based on the volume fraction. The ABAQUS model is shown in
Figure 5.
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Figure 5. Numerical modeling of FGM beam in ABAQUS.

An eight-node linear brick with a reduced integration element type (C3D8R) with a
mesh size of 5 mm was used for discretization. A simply-supported boundary condition
was considered in the model and a uniformly distributed load of 1 KN/m was applied on
the beam top face. Mesh sensitivity was first performed for mesh sizes of 10 mm, 7.5 mm,
5.0 mm, and 2.0 mm with corresponding stress ratios the top and bottom beam flexural
stresses shown in Table 1.

Table 1. Mesh size sensitivity.

Mesh Size
(mm) E1/E2 = 10 E1/E2 = 0.1

2.0 −0.25 −4.65
5.0 −0.244 −4.60
7.5 −0.241 −4.14
10 −0.237 −4.20

It can be seen from Figure 6 that the analytical solution for stress distribution presented
here for E-FGM agrees well with numerical simulation and with similar literature as shown
in Table 2. The comparison was made by considering the ratio of the top and bottom beam
normalized flexural stresses along the beam longitudinal axis.
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Table 2. Validation of E-FGM stress distribution.

This Method Sankar [2] Sharifishourabi et al.
[26] Numerical Model

E1/E2 = 10 −0.209 −0.21 −0.209 −0.24
E1/E2 = 1.0 −1.0 −1.0 −1.0 −1.0
E1/E2 = 0.1 −4.77 −4.80 −4.75 −4.60

The analytical solution well agreed with available literature results in all cases, while
a slight difference in the numerical model was observed. The reasons for such differ-
ences are, a stepwise material distribution is used in the ABAQUS model, as opposed
to continuous variation in the integral of the analytical solution. Furthermore, current
commercial software, such as ABAQUS, concentrates on approximate modeling using
piecewise homogenous material assignments. Another reason is the number of layers
used (sixteen-layers) in a 3D model simulation makes its error susceptible. However, the
overall stress distribution in all numerical model cases agrees with the distribution from
the analytical solution.

4.2. Power-Law Function FGM Beam

The approaches and observation from the E-FGM beam analysis above which is
validated from the available literature were used to extend to P-FGM model analysis. The
material function in P-FGM is expressed using volume fraction expression in Equation (2)
and young’s modulus variation from Equation (3). For P-FGM beam analysis the integration
is performed from (−h/2) to (h/2) to obtain the stiffness coefficients of Equations (16)–(18).

K1 = h
(

nE2 + E1

n + 1

)
(34)

K2 = nh2
(

E1 − E2

2(n + 1)(n + 2)

)
(35)

K3 =
h3

12

(
E1 −

12(E1 − E2)

(n + 2)(n + 3)

)
(36)

4.2.1. Axial Stress Distribution in P-FGM Beam

Substituting the inverse of the stiffness coefficients, E(z), and normalizing the stress
for the top stress one can obtain the normalized axial normal stress distributions across
P-FGM beam thickness as shown in Figure 7. It should be noted that, as opposed to
E-FGM analysis, the parameter in P-FGM is the power-law index (n). Therefore, the elastic
moduli E1 and E2 should be initially specified. For this demonstration, E1 = 210 MPa and
E2 = 390 MPa for steel and ceramic, respectively, were used.
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4.2.2. Shear Stress Distribution in P-FGM Beam

The shear stress distribution normalized with the average shear stress is presented in
Figure 8. One can observe that the maximum shear stress for each power-law index value
considered corresponds to the neural axis location along with the beam thickness. For this
demonstration E1 = 210 MPa and E2 = 390 MPa for steel and ceramic, respectively, were
used. The maximum and minimum normalized shear stress are observed for n = 0.1 and
n = 2.0 with 1.45 and 1.14 times the average shear, respectively.
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4.3. Influence of Material Function on FGM Beam Deflection

The deflections along the FGM beam w(x) can be obtained by integrating both sides of
the curvature equation for x and applying boundary conditions. Two boundary conditions
were considered: simply supported and Cantilever FGM Beams.

κ =
M(x)

D̃
=

d2w
dx2 (37)

where D̃ is the bending rigidity for the FGM beam and can be obtained as

D̃ = K3 −
K2

2

K1
(38)

Boundary conditions for simply supported FGM beam:

w(0) = 0 w(L) = 0 (39)

Boundary conditions for cantilever FGM beam:

w(0) = 0 dw
dx (0) = 0 (40)

The deflections for both simply supported and cantilever FGM beam was calculated
for unit width, 0.1 m depth, and a total length of 10 m. The S-S beam deflections were
analyzed for a unit distributed load while for a cantilever beam a unit concentrated load
was applied at the free end. One can observe from Figures 9 and 10 that the maximum
deflection occurred for a homogenous steel beam while the minimum deflection is for
P-FGM with power-law index value n = 0.1 and the E-FGM beam showed the second-
lowest deflection in both simply supported and cantilever beams. The reason for this
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can be explained by Young’s modulus variation in Figure 1a where for n = 0.1 significant
portion, about 90% of the beam thickness, is composed of a material with a higher E-value.
The opposite is true for n = 5.0 where about 80% of the beam thickness is composed of a
material with the smallest E-value.
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Numerical FGM Beam Deflection Example

Deflection on the FGM beam is evaluated by double integrating Equation (37). The
flexural rigidity of the FGM beam can be evaluated using Equation (38) for each material
function and index parameter. For P-FGM, substituting E1 = 390 GPa (ceramic) and
E2 = 210 GPa (steel) and solving the stiffness coefficients from Equations (34)–(36), the
FGM beam rigidity can be obtained. For a uniformly distributed unit load of w = 1 kN/m,
the moment at any distance from the left support can be expressed as:

M(x) =
wL
2

x− wx2

2
(41)
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Deflection equation along a simply supported FGM beam can be simplified as similar
to the well-known isotropic-homogenous beam deflection except for the beam rigidity.

δ(x) =
wx
24D̃

(L3 − 2Lx2 + x3) (42)

The simply supported FGM beam with E-FGM, P-FGM, and homogenous steel deflec-
tions from the unit distributed load are presented in Table 3.

Table 3. Simply supported FGM beam deflection.

Length (m) Steel E-FGM n = 0.1 n = 1 n = 5

0 0.0000 0.0000 0.0000 0.0000 0.0000
1 −0.0023 −0.0016 −0.0013 −0.0017 −0.0019
2 −0.0044 −0.0031 −0.0025 −0.0032 −0.0036
3 −0.0061 −0.0042 −0.0034 −0.0044 −0.0050
4 −0.0071 −0.0049 −0.0040 −0.0051 −0.0058
5 −0.0074 −0.0052 −0.0042 −0.0054 −0.0061
6 −0.0071 −0.0049 −0.0040 −0.0051 −0.0058
7 −0.0061 −0.0042 −0.0034 −0.0044 −0.0050
8 −0.0044 −0.0031 −0.0025 −0.0032 −0.0036
9 −0.0023 −0.0016 −0.0013 −0.0017 −0.0019

10 0.0000 0.0000 0.0000 0.0000 0.0000

It can be noted that the maximum deflections were observed in the steel beam com-
pared to the FGM beams. Also, amongst the material function, the P-FGM with index
n = 0.1 resulted in the least deflection. This observation can lead to an optimized material
function in FGM beam structural application, especially in terms of deflection.

5. Conclusions

A simplified analytical formulation for functionally graded beam stresses analysis and
optimization of material function for deflection were presented. The material properties in
the FGM beam were assumed to vary in the thickness direction using power-law (P-FGM)
and exponential function (E-FGM) material functions. The FE model was also conducted
using ABAQUS and some of the results obtained were validated by comparing with
literature. The following observations were drawn from the results of the analysis:

• The non-dimensional normal stress and shear stress are independent of the actual
elastic moduli values but rather depend on the ratio of E1/E2 and the location across
the beam thickness (z) for the E-FGM model.

• The maximum normalized shear stress is located at the neutral axis locations for each
E1/E2 considered. Moreover, the normalized shear stress is 1.5 times the average
shear stress for E1 = E2, which is consistent with the classical beam theory. However,
this maximum ratio is 1.68, 1.55, 1.49, and 1.62 for E1/E2 = 10, E1/E2 = 5, E1/E2 = 0.5,
and E1/E2 = 0.1, respectively.

• That the maximum shear stress for each power-law index value considered corre-
sponds at the neural axis location along with the beam thickness. The maximum and
minimum normalized shear stress are observed for n = 0.1 and n = 2.0 with 1.45 and
1.14 times the average shear, respectively.

• The maximum deflection on the FGM beam occurred for a homogenous steel beam
while the minimum deflection is for P-FGM with power-law index value n = 0.1
while E-FGM showed the second-lowest deflection in both simply supported and
cantilever beams.

The observations and findings in this paper considered only E-FGM and P-FGM
material functions. Future studies need to include the S-FGM material function to derive
a similar simplified stress analysis solution, perform more parametric studies including
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different loading types, boundary conditions, and optimization of material functions for
both stress and deflection requirements of FGM beams.
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