

Case Western Reserve University Scholarly Commons @ Case Western Reserve University

Intersections Fall 2020

Intersections: CWRU Undergraduate Poster Session

Fall 12-1-2012

Optimizing Aplysia californica's Living Conditions

Ruiying Xu Case Western Reserve University

Follow this and additional works at: https://commons.case.edu/intersections-fa20

Part of the Biology Commons

Recommended Citation

Xu, Ruiying, "Optimizing Aplysia californica's Living Conditions" (2012). *Intersections Fall 2020*. 8. https://commons.case.edu/intersections-fa20/8

This Book is brought to you for free and open access by the Intersections: CWRU Undergraduate Poster Session at Scholarly Commons @ Case Western Reserve University. It has been accepted for inclusion in Intersections Fall 2020 by an authorized administrator of Scholarly Commons @ Case Western Reserve University. For more information, please contact digitalcommons@case.edu.

Optimizing *Aplysia* californica's Living Conditions

Ruiying Xu, Department of Biology

Mentor: Dr. Hillel Chiel

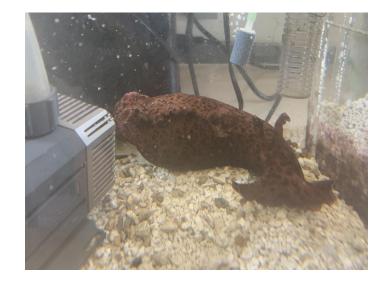
Outline

Introduction

Methods

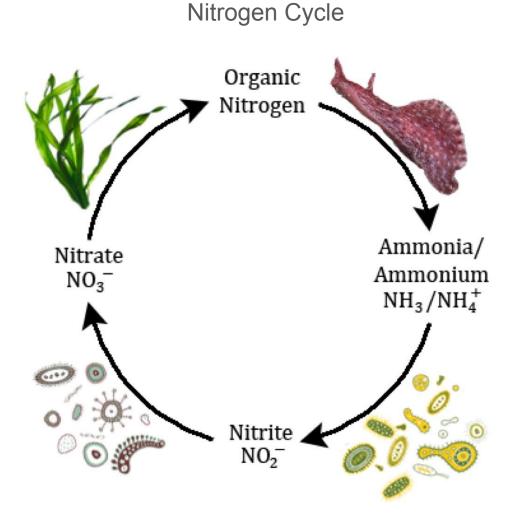
Results

Discussion

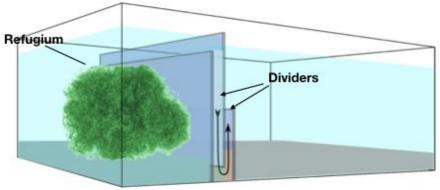

Future Work

Introduction

Aplysia californica


- Excellent model for studying the relationship between neuron circuitry and behavior (Kandel, 1976)
- Can determine the health of animals by looking at the body and behavior: Inking response (Carew & Kandel, 1977), feeding responses (Kupfermann, 1974), skin lesions

Prior Work in Maintaining *Aplysia californica* Frequent replacement of tank sea water (Smith, 2011)


Introduction

 Nitrogen Cycle (Kalvelage *et al.*, 2013) Ammonia, nitrite and high concentration of nitrate are toxic (Camargo, Alonso, & Salamanca, 2005)

Tank Set-up (Kehl, 2019)

- Gravel, Sand, Dividers (filter floss and gravel), Sponge Rock
 Bacteria attach to their surface
- 2 Compartments: Refugium & Main Tank Chaetomorpha in the refugium
- Filters
- Chiller & Pump
- Air pump
- Protein skimmer
- Lamp (Set to 12-hour/12-hour on-off cycle)

Introduction

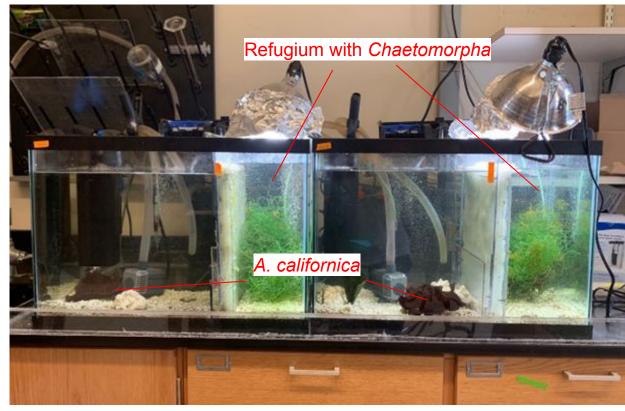
Goals:

-- To test if a refugium can control nitrate and ammonia levels and thus maintain *Aplysia*'s health

-- To test the impacts of accumulation of nitrate on Aplysia

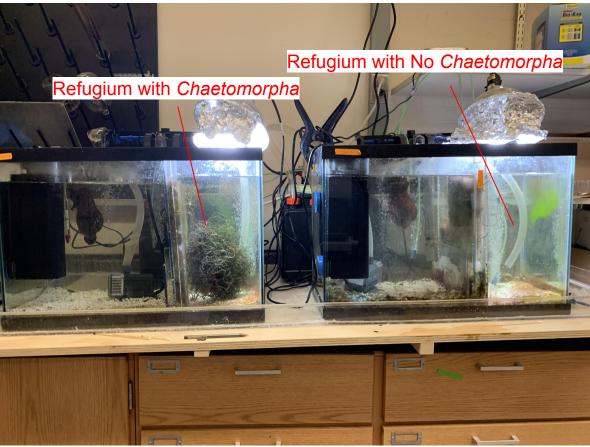
Hypothesis 1: Chaetomorpha in the refugium sequesters nitrates

<u>Hypothesis 2</u>: Nitrate toxicity can cause long-term negative impacts on both *Aplysia* and the environment


<u>**Prediction**</u>: The removal of macroalgae from the refugium will cause nitrate accumulation in the system and cause long-term harm to *Aplysia*.

Two tanks (control and experimental groups); two *Aplysia* from the same shipment within a similar weight range

Three stages:


Stage One. Observation Period

Observed healthy *Aplysia californica* with normal nitrate and ammonia levels with Chaetomorpha in both refugia.

Stage Two. Nitrogen Accumulation

Removed *Chaetomorpha* and observed the health conditions of *Aplysia californica's* and environmental changes. *Chaetomorpha* was moved to an unrelated tank.

Stage Three. Return of Chaetomorpha

Returned of *Chaetomorpha* to the empty refugium, and observed the health of *Aplysia californica*.

- Took measurements:
 - 1. Nitrate and ammonia levels: nitrate and ammonia kits (Red Sea);
 - 2. <u>Aplysia's health conditions</u>: weight, biting intervals (Kupfermann, 1974), swallowing intervals (Kupfermann, 1974), amount eaten, inking frequency, skin lesions;

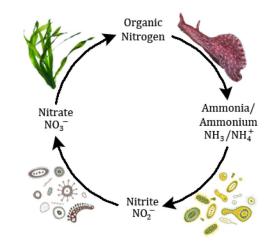
3. Mass of Chaetomorpha

- Fed 1.8-1.9 grams of dry Nori (9-11 grams of when wet) as the only food every two days.
- Biting intervals were measured using one Nori piece;
 Swallowing intervals were measured using 0.5cm x 19cm Nori strips with lines marking one centimeter intervals;

5 bites and swallows were taken to obtain average responses.

Results

• Aplysia from the control group became infected and died before stage two.

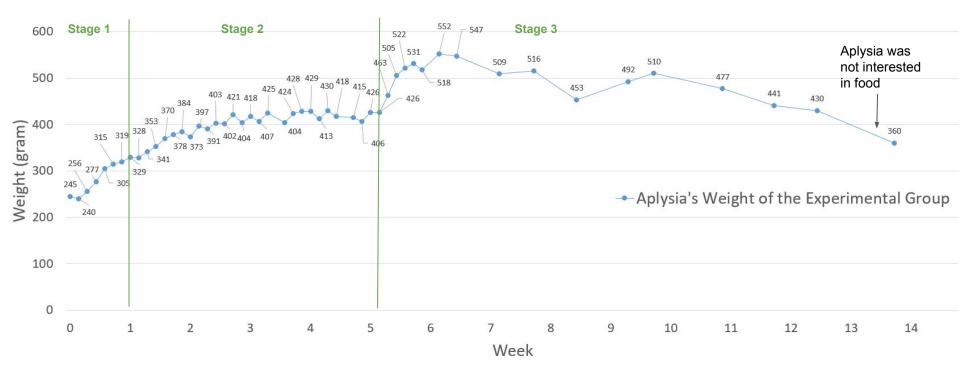


Nitrate and Ammonia Levels

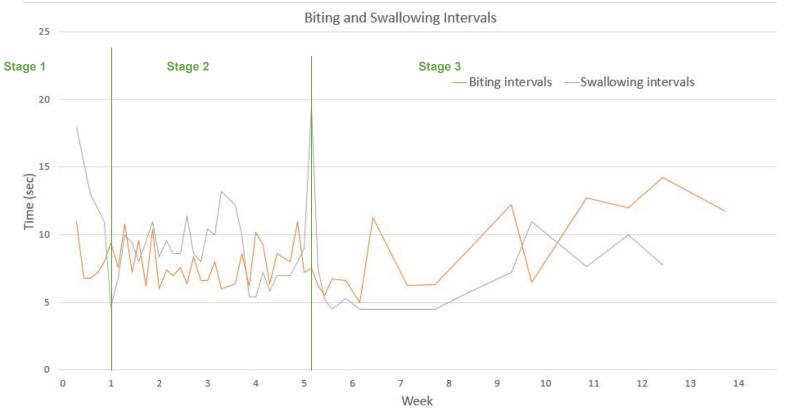
9 Stage 1 Stage 2 Stage 3 -Ammonia Level Ammonia Level (ppm) Aplysia was not interested in food 5 14 10 11 12 13 Week Nitrate Level 120 100 Nitrate Level Aplysia was not interested Nitrate Level (ppm) in food 60 40 20 0 5 12 13 14

Week

We can see a steady increase of ammonia and nitrate during stage two, after *Chaetomorpha* removal, and a decrease in ammonia level and a fluctuation in nitrate level in stage three after returning of the *Chaetomorpha*.


Weight of Chaetomorpha Over Time

Weight of Chaetomorpha


Weight of Aplysia californica Over Time

Aplysia's Weight of the Experimental Group

Weight of Aplysia increased in stage 1, fluctuated in stage 2, boosted and drastically decreased in stage 3.

Changes of Biting and Swallowing Intervals Over Time

Preliminary results suggest that the environmental stress caused by a high nitrate level may not affect *Aplysia*'s biting and swallowing intervals.

Discussion

- The removal of *Chaetomorpha* was associated with increase in both nitrate and ammonia;
- The *Chaetomorpha* may sequester nitrates since the weight of the *Chaetomorpha* increased with nitrate level in stage 3;
- The *Aplysia*'s appetite decreased and it lost weight with an increase in nitrate and ammonia levels after the removal of *Chaetomorpha*;
- The environmental stress due to the accumulation of nitrates does not cause obvious changes in biting and swallowing intervals.

Future Application & Value of the Research

- 1. A successful control group to compare nitrate levels and *Aplysia*'s health with *Chaetomorpha* inside the refugium through all stages;
- 2. Replications are needed to provide further evidence for the function of the refugium and the impact of a high nitrate level on the system and *Aplysia*. A second trial which started in Sept. 2020 is still in progress.
- 3. Further changes to the tank environment might include adding snails, shrimps or different kinds of macroalgae to improve the capacity of the tanks to house *Aplysia*.

Acknowledgements

- Dr. Hillel Chiel, Department of Biology, CWRU
- Dr. Catherine Kehl, Department of Biology, UNC-CH
- Dr. Jeffrey Gill, Department of Biology, CWRU
- Members of Dr. Chiel's lab