

Case Western Reserve University

Scholarly Commons @ Case Western Reserve University

Student Scholarship

Fall 10-2021

Perovskite Film Formation for Solar Cell Absorbers: Effects of **Substrate Modification**

Mirra M. Rasmussen Case Western Reserve University, mmr125@case.edu

Kyle M. Crowley Case Western Reserve University

Ina T. Martin Case Western Reserve University, ixm98@case.edu

Author(s) ORCID Identifier:

🔟 Mirra M. Rasmussen

Follow this and additional works at: https://commons.case.edu/studentworks

Part of the Semiconductor and Optical Materials Commons

Recommended Citation

Rasmussen, Mirra M.; Crowley, Kyle M.; and Martin, Ina T., "Perovskite Film Formation for Solar Cell Absorbers: Effects of Substrate Modification" (2021). Student Scholarship. 13. https://commons.case.edu/studentworks/13

This Poster is brought to you for free and open access by Scholarly Commons @ Case Western Reserve University. It has been accepted for inclusion in Student Scholarship by an authorized administrator of Scholarly Commons @ Case Western Reserve University. For more information, please contact digitalcommons@case.edu.

CWRU authors have made this work freely available. Please tell us how this access has benefited or impacted you!

Perovskite Film Formation for Solar Cell Absorbers: Effects of Substrate Modification

http://www.phys.cwru.edu/sites/morecenter/

Mirra M. Rasmussen¹, Kyle M. Crowley¹, Ina T. Martin¹ ¹ Case Western Reserve University, Cleveland, OH 44106, USA

Materials

Design for

Reliability

1a. Glass

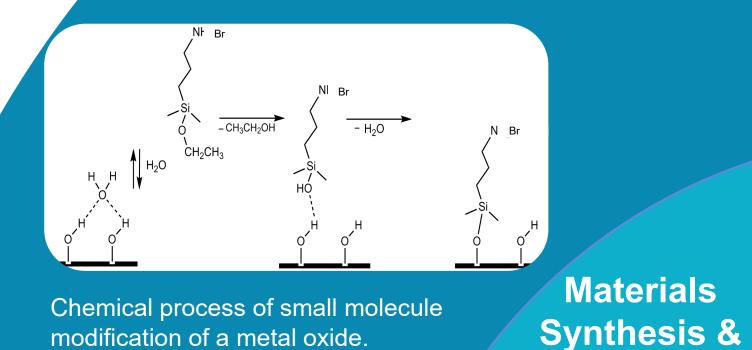
Introduction & Background

Pb-Based Perovskite Films as an Emerging PV Absorber

Record devices are over 20% efficient but there are materials problems that need to be solved [1].

Interfacial modification affects:

- Film uniformity
- Crystallinity
- Grain size
- Defect density


Small molecule modifiers and their positive effects on device performance. Data from references [2] and [4]

Modifier	Stack Structure	V _{oc} [V]	J _{sc} [mA cm ⁻²]	PCE [%]	
Dromobonzaio	ITO/NiO _x / MAPbI ₃ /PCBM /bis-C ₆₀ /Ag	1.07	19.1	15.3	
Bromobenzoic Acid <i>(Br-BA)</i> [2]	ITO/NiO _x / Br-BA / MAPbI ₃ /PCBM /bis-C ₆₀ /Ag	1.11	21.7	18.4	
(3-Aminopropyl)	FTO/SnO ₂ / MAPbI ₃ / Spiro- OMeTAD/Au	1.065	20.84	14.69	
triethoxysilane (APTES) [4]	FTO/SnO ₂ / APTES / MAPbl ₃ / Spiro- OMeTAD/Au	1.16	21.23	17.03	

Contact Charge transport layer (CTL) Absorber Molecular modifiers Metal Oxide CTL Transparent conductive oxide Superstrate Glass

Goal: Improve stability of perovskite absorbers through small molecule modification of perovskite-TCO interface.

Characterization

modification of a metal oxide.

Device properties and performance are directly tied to perovskite film properties [3].

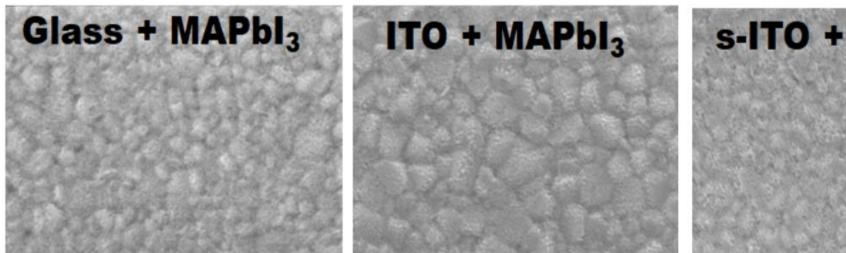
Approach: Deposition of

silane-modified substrates

investigate effects of a

perovskite degradation.

BPTMS interlayer on


MAPbl₃ on bare and

to systematically

Interfacial Modification and Stability

BPTMS and MAPbl₃ Grain Growth

- BPTMS leads to growth of smaller grains on ITO
- MAPbl₃ grains on s-ITO comparable in size to those grown on glass

s-ITO + MAPbl₃

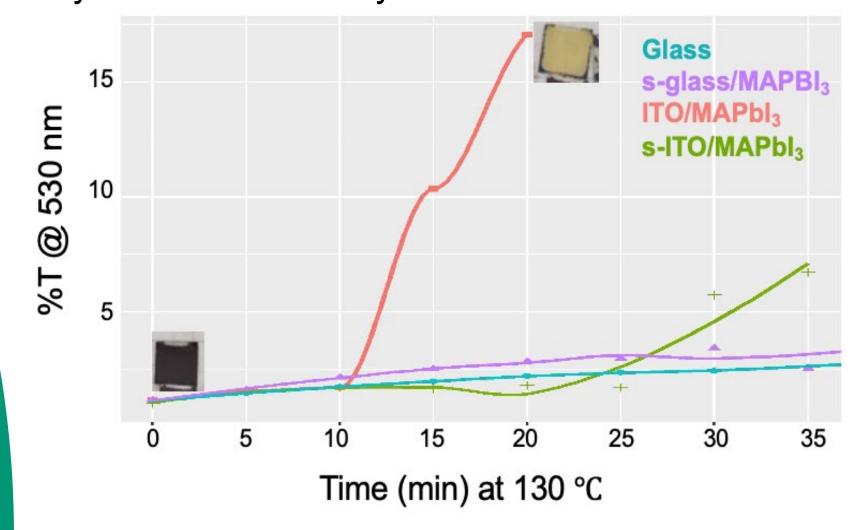
"s-" denotes inclusion of BPTMS interlayer

Results: BPTMS passivates the perovskite-TCO interface, affecting both the film morphology and degradation profile of the perovskite.

Device

Fabrication

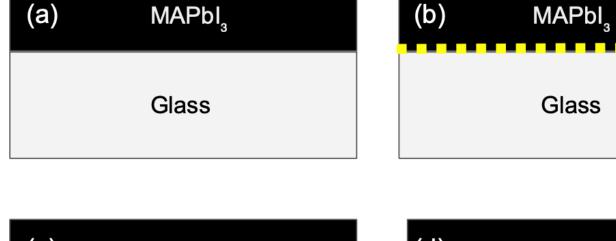
& Optimization


0.2 0.3

25 400 500 600 700 800 Wavelength (nm)

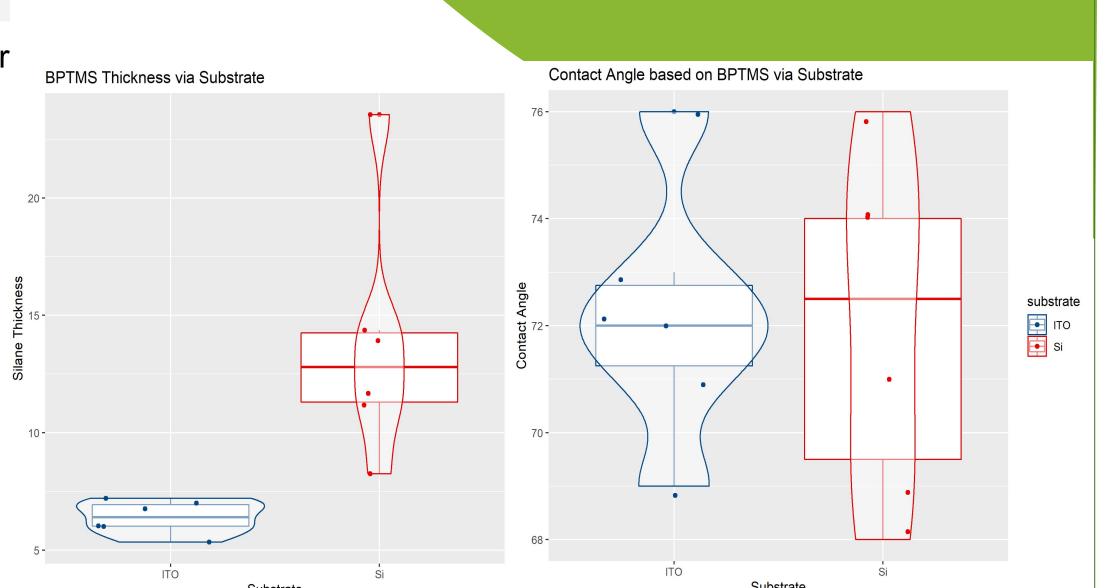
UV-Vis spectrum of $MAPbl_3$ on s-ITO.

BPTMS and MAPbl₃ Degradation


- BPTMS mitigates MAPbl₃ degradation on ITO (in green) compared to the unmodified control (in red)
- Decouples effects of grain size from interfacial chemistry in terms of stability

Experimental Flow

- Clean substrates
- 2. Deposit organofunctional silane [6,7]
- 3. Spin coat MAPbl₃ and anneal [5]
- Characterization and degradation


Schematic overview of film stacks

Dashed line indicates organofunctional silane layer

Substrat e	Thickness , Å	Contact Angle, degrees			
Silicon	11 ± 1	62 ± 3			
	24 ± 1	81 ± 2			
	34 ± 2	84 ± 1			
ITO	6 ± 1	72 ± 2			
ITO					

2c. ITO/MoO_x Lifetime Molecular **Enhancement** structure of 3-Bromopropyl trimethoxysilane [BPTMS]

 Further investigate silane-MO interface and its effects on the perovskite film with SE and XPS

Future Directions:

- Apply silanes to MOs (Metal Oxides), commonly used as PV charge transport layers
- Investigate systematically varied TCO/MO/silane combinations in halfstack degradation studies

Conclusions

- Results highlight importance of film studies under device-relevant conditions
- Organofunctional silanes used as molecular modifiers can passivate a TCO/perovskite interface
- Interfacial modifiers have multifaceted effects on perovskite film morphology and lifetime
- ❖ BPTMS forms mono- to multilayers on SiO₂ and a monolayer on ITO.
- As silanes bond to surface hydroxyl groups, this is likely due to differences in properties of the oxide surface, specifically the availability and/or spacing of the hydroxyl groups

Acknowledgements

We acknowledge the Case Western Reserve University School of Engineering Faculty Investment Fund for funding the bulk of this work ("Fundamental Materials Studies of a Novel Lead-Free Perovskite"). We also acknowledge the CWRU Flora Stone Mather Center for Women for funding Mirra Rasmussen via a 2021 Women in STEM SOURCE grant. Experimental work was performed in the CWRU Materials for Opto/electronics Research and Education (MORE) Center, a core facility est. 2011 by Ohio Third Frontier grant TECH 09-021.

References

- ¹ *Nature Energy*, vol. 4, pp. 1, Jan. 2019.
- ² ChemSusChem, 10 (2017), 3794-3803. DOI: 10.1002/cssc.201701262.
- ³ *J. Photon. Energy* 6(2), 022001 (2016), DOI: 10.1117/1.JPE.6.022001. ⁴ Journal of Materials Chemistry A, vol. 5, no. 4, pp. 1658–1666, 2017.
- ⁵ ACS Appl. Energy Mater. 2020, 3, 3, 2386–2393 DOI:10.1021/acsaem.9b02052 ⁶ Langmuir 29 (2013), 4057-67. DOI:10.1021/la304719y
- ⁷ ACS Appl. Mater. Interfaces 9 (2017), 17620-17628. DOI: 10.1021/acsami.7b02638 ⁸ AIP Advances, vol. 9, no. 8, p. 085123, 2019.

Silane and Perovskite Deposition

Conclusions and Future Directions