

Case Western Reserve University

Scholarly Commons @ Case Western Reserve University

Student Scholarship

Summer 2021

Surface Energy and Microstructure: The Effect of the Underlying Substrate on Perovskite Film Formation for Solar Cell Absorbers

Mirra M. Rasmussen Case Western Reserve University, mmr125@case.edu

Kyle M. Crowley Case Western Reserve University

Ina T. Martin Case Western Reserve University, ixm98@case.edu

Author(s) ORCID Identifier:

🔟 Mirra M. Rasmussen

Follow this and additional works at: https://commons.case.edu/studentworks

Part of the Semiconductor and Optical Materials Commons

Recommended Citation

Rasmussen, Mirra M.; Crowley, Kyle M.; and Martin, Ina T., "Surface Energy and Microstructure: The Effect of the Underlying Substrate on Perovskite Film Formation for Solar Cell Absorbers" (2021). Student Scholarship. 12.

https://commons.case.edu/studentworks/12

This Poster is brought to you for free and open access by Scholarly Commons @ Case Western Reserve University. It has been accepted for inclusion in Student Scholarship by an authorized administrator of Scholarly Commons @ Case Western Reserve University. For more information, please contact digitalcommons@case.edu.

CWRU authors have made this work freely available. Please tell us how this access has benefited or impacted you!

Surface Energy and Microstructure: The effect of the underlying substrate on perovskite film formation for solar cell absorbers

Mirra M. Rasmussen¹, Kyle M. Crowley¹, Ina T. Martin¹ ¹ Case Western Reserve University, Cleveland, OH 44106, USA

Introduction & Background

Pb-Based Perovskite Films as an Emerging PV Absorber

Record devices are over 20% efficient but there are materials problems that need to be solved [1].

Interfacial modification affects:

- Film uniformity
- Crystallinity
- Grain size
- Defect density

Small molecule modifiers and their positive effects on device performance. Data from references [2] and [4].

Modifier	Stack Structure	V _{oc} [V]	J _{sc} [mA cm ⁻²]	PCE [%]
Bromobenzoic Acid (<i>Br-BA</i>) [2]	ITO/NiO _x / MAPbI ₃ /PCBM /bis-C ₆₀ /Ag	1.07	19.1	15.3
	ITO/NiO _x / Br-BA / MAPbI ₃ /PCBM /bis-C ₆₀ /Ag	1.11	21.7	18.4
(3-Aminopropyl) triethoxysilane (APTES) [4]	FTO/SnO ₂ / MAPbI ₃ / Spiro- OMeTAD/Au	1.065	20.84	14.69
	FTO/SnO ₂ / APTES / MAPbl ₃ / Spiro- OMeTAD/Au	1.16	21.23	17.03

Contact Charge transport layer (CTL) Absorber Molecular modifiers Metal Oxide CTL Transparent conductive oxide Superstrate Glass

Goal: Improve stability of perovskite-TCO interface.

Chemical process of small molecule modification of a metal oxide.

Device properties and performance are directly tied to perovskite film properties [3].

perovskite absorbers through small molecule modification of

> **Materials** Design for Device **Materials** Reliability Synthesis & **Fabrication** & Optimization Characterization Anneal

> > Lifetime

Interfacial Modification and Stability

BPTMS and MAPbl₃ Grain Growth

- BPTMS leads to growth of smaller grains on ITO
- MAPbl₃ grains on s-ITO comparable in size to those grown on glass

"s-" denotes inclusion of BPTMS interlayer Glass + MAPbl₃ ITO + MAPbl₃ s-ITO + MAPbl₃

Results: BPTMS passivates the perovskite-TCO interface, affecting both the film morphology and degradation profile of the perovskite.

Voltage (V)

UV-Vis spectrum of MAPbl₃ on s-ITO.

BPTMS and MAPbl₃ Degradation

- BPTMS mitigates MAPbl₃ degradation on ITO (in green) compared to the unmodified control (in red)
- Decouples effects of grain size from interfacial chemistry in terms of stability

Experimental Flow

- 1. Clean substrates
- 2. Deposit organofunctional silane [6,7]
- 3. Spin coat MAPbl₃ and anneal [5]
- 4. Characterization and degradation

Schematic overview of film stacks

Dashed line indicates organofunctional silane layer.

Substrate	Thicknes s, Å	Contact Angle, degrees
Silicon	11 ± 1	62 ± 3
	24 ± 1	81 ± 2
	34 ± 2	84 ± 1
ITO	6 ± 1	72 ± 2

Glass

Left: Characteristics of BPTMS modified ITO and silicon. Silane thickness is modelled from spectroscopic ellipsometry measurements.

Glass

Right: SE characterization of perovskite films

Silane and Perovskite Deposition

Approach: Deposition of MAPbl₃ on bare and silane-modified substrates to systematically investigate effects of a BPTMS interlayer on perovskite degradation.

> 3-Bromopropyl trimethoxysilane [BPTMS]

Enhancement Molecular structure of

> Further investigate silane-MO interface and its effects on the perovskite film with SE and XPS

Future Directions:

- Apply silanes to MOs (Metal Oxides), commonly used as PV charge transport layers
- Investigate systematically varied TCO/MO/silane combinations in halfstack degradation studies

Conclusions

- Results highlight importance of film studies under device-relevant conditions
- Organofunctional silanes used as molecular modifiers can passivate a TCO/perovskite interface
- Interfacial modifiers have multifaceted effects on perovskite film morphology and lifetime

Acknowledgements

We acknowledge the Case Western Reserve University School of Engineering Faculty Investment Fund for funding the bulk of this work ("Fundamental Materials Studies of a Novel Lead-Free Perovskite"). We also acknowledge the CWRU Flora Stone Mather Center for Women for funding Mirra Rasmussen via a 2021 Women in STEM SOURCE grant. Experimental work was performed in the CWRU Materials for Opto/electronics Research and Education (MORE) Center, a core facility est. 2011 by Ohio Third Frontier grant TECH 09-021.

References

- ¹ *Nature Energy*, vol. 4, pp. 1, Jan. 2019.
- ² ChemSusChem, 10 (2017), 3794-3803. DOI: 10.1002/cssc.201701262.
- ³ J. Photon. Energy 6(2), 022001 (2016), DOI: 10.1117/1.JPE.6.022001.
- ⁴ Journal of Materials Chemistry A, vol. 5, no. 4, pp. 1658–1666, 2017. ⁵ ACS Appl. Energy Mater. 2020, 3, 3, 2386–2393 DOI:10.1021/acsaem.9b02052
- ⁶ Langmuir 29 (2013), 4057-67. DOI:10.1021/la304719y ⁷ ACS Appl. Mater. Interfaces 9 (2017), 17620-17628. DOI: 10.1021/acsami.7b02638
- ⁸ AIP Advances, vol. 9, no. 8, p. 085123, 2019.

Conclusions and Future Directions