

Case Western Reserve University Scholarly Commons @ Case Western Reserve University

Intersections Fall 2020

Intersections: CWRU Undergraduate Poster Session

Fall 12-1-2012

Remarkable Sensitivity of the Prospective Photodynamic Therapy Agent 6-Selenoguanine to pH

Collin Merrick Case Western Reserve University

Sean J. Hoehn Case Western Reserve University, sxh905@case.edu

Luis A. Ortiz-Rodríguez Case Western Reserve University

Sarah Krul Case Western Reserve University

Carlos E. Crespo-Hernández Case Western Reserve University, cxc302@case.edu

Follow this and additional works at: https://commons.case.edu/intersections-fa20

Part of the Chemistry Commons

Recommended Citation

Merrick, Collin; Hoehn, Sean J.; Ortiz-Rodríguez, Luis A.; Krul, Sarah; and Crespo-Hernández, Carlos E., "Remarkable Sensitivity of the Prospective Photodynamic Therapy Agent 6-Selenoguanine to pH" (2012). *Intersections Fall 2020.* 15.

https://commons.case.edu/intersections-fa20/15

This Book is brought to you for free and open access by the Intersections: CWRU Undergraduate Poster Session at Scholarly Commons @ Case Western Reserve University. It has been accepted for inclusion in Intersections Fall 2020 by an authorized administrator of Scholarly Commons @ Case Western Reserve University. For more information, please contact digitalcommons@case.edu.

Remarkable Sensitivity of the Prospective Photodynamic Therapy Agent 6-Selenoguanine to pH

Collin Merrick, Sean J. Hoehn, Luis A. Ortiz-Rodríguez, Sarah Krul and Carlos E. Crespo-Hernández* Department of Chemistry, Case Western Reserve University 10900 Euclid Ave Cleveland, OH 44106

Photodynamic Therapy

- Utilizes UVA irradiation to cause localized cell death
- Treatment option for several medical conditions

Ashwood, B.; Pollum, M.; Crespo-Hernández, C. E. Photochemical and Photodynamical Properties of Sulfur-Substituted Nucleic Acid Bases,. *Photochem. Photobiol.* **2019**, *95* (1), 33–58.

Excitation and Relaxation

Functionalization Controls Relaxation Mechanisms

- Changing functional groups changes relaxation pathways
 - Only certain combinations of functional groups result in reactive triplet states

Crespo-Hernández, C. E.; Martínez-Fernández, L.; Rauer, C.; Reichardt, C.; Mai, S.; Pollum, M.; Marquetand, P.; González, L.; Corral, I. Electronic and Structural Elements That Regulate the Excited-State Dynamics in Purine Nucleobase Derivatives. *J. Am. Chem. Soc.* **2015**, *137* (13), 4368–4381.

Heavy Atom Substitution

6-selenoguanine

Heavy Atom Substitution

Farrell, K. M.; Brister, M. M.; Pittelkow, M.; Sølling, T. I.; Crespo-Hernández, C. E. Heavy-Atom-Substituted Nucleobases in Photodynamic Applications: Substitution of Sulfur with Selenium in 6-Thioguanine Induces a Remarkable Increase in the Rate of Triplet Decay in 6-Selenoguanine. *J. Am. Chem. Soc.* **2018**, *140* (36), 11214–11218.

Table 1. Global lifetimes for 6SeGua and 6tGua following excitation at 352 nm under N_2 -saturated conditions

Lifetimes	τ ₁ / ps	$ au_2$ / ps	$ au_3$ / ns	
6tGua	$0.35\pm0.04^{\text{a}}$	18 ± 1	$1420 \pm 180^{\text{b}}$	
6SeGua	0.13 ± 0.05	31 ± 2	$1.7\pm0.1^{\circ}$	

^a Same lifetime value was obtained within experimental uncertainties exciting at 342 nm; ^b Reproduced from ref. 22, where an excitation wavelength of 345 nm was used; ^c Estimated by extrapolating fit past 1 ns.

Heavy Atom Substitution

Farrell, K. M.; Brister, M. M.; Pittelkow, M.; Sølling, T. I.; Crespo-Hernández, C. E. Heavy-Atom-Substituted Nucleobases in Photodynamic Applications: Substitution of Sulfur with Selenium in 6-Thioguanine Induces a Remarkable Increase in the Rate of Triplet Decay in 6-Selenoguanine. *J. Am. Chem. Soc.* **2018**, *140* (36), 11214–11218.

6-Selenoguanine (6SeGua)

Ground state optimized structures calculated at the B3LYP/IEFPCM/6-311++G(d,p) level of theory

Vertical excitation energies calculated at the TD-PBE0/IEFPCM/6-311++G(d,p) level of theory

6-Selenoguanine (6SeGua)

Ground state optimized structures calculated at the B3LYP/IEFPCM/6-311++G(d,p) level of theory

Vertical excitation energies calculated at the TD-PBE0/IEFPCM/6-311++G(d,p) level of theory

Transient Absorption Spectroscopy

- Measures changes in absorbance (ΔA)
- Produces 2 plots
 - Spectra: ΔA vs wavelength
 - Comparing spectra at different time delays provides evidence for relaxation processes
 - Kinetics: ΔA vs time
 - Fit mathematically to obtain lifetimes
 - Challenge of not over-fitting data

Transient Absorption Spectroscopy

Reichardt, C.; Vogt, R. A.; Crespo-Hernández, C. E. J. Chem. Phys. 2009, 131, 224518.

Evolution Associated Spectra (EAS)

*Estimates based on mathematical fitting beyond the time window of the experiment

Conclusions

- The relaxation pathway of 6SeGua at pH 9.8 is different than at pH 7.4
 - EAS and global analysis vary greatly
 - > Need quantum chemical calculations to identify exact mechanism
- The photophysics of the neutral and anionic mixture at pH 7.4 do not primarily reflect that of the anionic species
- Further investigation of the isolated neutral species is required

Thank You!

From fundamental research...

...to real-world applications...

