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Abstract

Sickle cell disease, a genetic disorder affecting a sizeable global demographic, manifests in

sickle red blood cells (sRBCs) with altered shape and biomechanics. sRBCs show height-

ened adhesive interactions with inflamed endothelium, triggering painful vascular occlusion

events. Numerous studies employ microfluidic-assay-based monitoring tools to quantify

characteristics of adhered sRBCs from high resolution channel images. The current image

analysis workflow relies on detailed morphological characterization and cell counting by a

specially trained worker. This is time and labor intensive, and prone to user bias artifacts.

Here we establish a morphology based classification scheme to identify two naturally arising

sRBC subpopulations—deformable and non-deformable sRBCs—utilizing novel visual

markers that link to underlying cell biomechanical properties and hold promise for clinically

relevant insights. We then set up a standardized, reproducible, and fully automated image

analysis workflow designed to carry out this classification. This relies on a two part deep

neural network architecture that works in tandem for segmentation of channel images and

classification of adhered cells into subtypes. Network training utilized an extensive data set

of images generated by the SCD BioChip, a microfluidic assay which injects clinical whole

blood samples into protein-functionalized microchannels, mimicking physiological condi-

tions in the microvasculature. Here we carried out the assay with the sub-endothelial protein

laminin. The machine learning approach segmented the resulting channel images with 99.1

±0.3% mean IoU on the validation set across 5 k-folds, classified detected sRBCs with 96.0

±0.3% mean accuracy on the validation set across 5 k-folds, and matched trained personnel

in overall characterization of whole channel images with R2 = 0.992, 0.987 and 0.834 for

total, deformable and non-deformable sRBC counts respectively. Average analysis time per

channel image was also improved by two orders of magnitude (� 2 minutes vs� 2-3 hours)

over manual characterization. Finally, the network results show an order of magnitude

less variance in counts on repeat trials than humans. This kind of standardization is a
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prerequisite for the viability of any diagnostic technology, making our system suitable for

affordable and high throughput disease monitoring.

Author summary

Among the most serious consequences of sickle cell disease are enhanced adhesive inter-

eactions between sickle red blood cells and the walls of blood vessels, leading to potentially

fatal vaso-occlusive crises. To better understand these interactions, microfluidic experi-

ments inject patient blood into cavities lined with proteins that tether the red blood cells.

The numbers and shapes of the adhered cells provide important clues about the underly-

ing biophysics of the disorder, and could allow detailed patient-specific monitoring of the

disease progression. However a major bottleneck in moving this technology from the lab

to the clinic has been reliance on specially trained workers to manually count and classify

cells, which can take hours for each experimental image. Using deep learning image analy-

sis, we demonstrate a way to address this problem: an automated system for biophysical

characterization of adhered sickle red blood cells in microfluidic devices. Our system can

achieve accuracies that not only match those of human experts, but are more consistent,

showing less variance in counts on repeat trials. Moreover the processing takes minutes

rather than hours per image. Our results are a first step toward enabling fast and afford-

able next-generation microfluidic monitoring tools for sickle cell disease.

1 Introduction

1.1 Background

Sickle cell disease (SCD) affects over 100,000 Americans and more than 4 million genetically

predisposed individuals worldwide [1–4]. The affected demographic commonly draws on

ancestral lineage from parts of Africa and India. The most common form of SCD is caused by

a single mutation in the β globin gene, leading to the expression of an abnormal form of hemo-

globin, HbS, in red blood cells (RBCs). Although SCD originates from a single deficit gene,

there are many observed clinical sub-phenotypes associated with the disease. They are not

mutually exclusive and some of the associated complications are seen to cluster together, sug-

gesting independent genetic modifiers as their epidemiological underpinnings [1]. These sub-

phenotypes are associated with different acute and/or chronic complications. Common acute

complications include pain crises, acute chest syndrome, stroke and hepatic or splenic seques-

tration. More long term effects include chronic organ damage of the lungs, bones, heart, kid-

neys, brain, and reproductive organs [5]. The resultant heterogeneity among SCD patients

belonging to different disease sub-phenotypes underlies the need for new methodologies to

allow intensive patient specific evaluation and management in outpatient, inpatient and emer-

gency department settings [6]. SCD also requires early diagnosis after birth and constant clini-

cal monitoring through the life-span of the patient, the absence of which leaves them prone to

reduced quality of life and premature mortality [7, 8].

The underlying biophysics of SCD hinges on associated complex dynamical phenomena

playing out in the vascular flow environment. Mutated hemoglobin molecules expressed in

affected sickle RBCs (sRBCs) have a tendency to polymerize in oxygen starved environments,

forming long chains which distort the cell profile. The damaged cell membrane displays

morphological sickling (distortion into a crescent shape) which dislocates the membrane
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molecules and leads to a stiffer membrane scaffolding. Consequently sRBCs are more adhesive

and less deformable than healthy RBCs [9, 10]. This increased membrane rigidity, along with

altered adhesion characteristics that heighten interactions with the endothelium and plasma,

directly give rise to SCD’s key manifestation: recurring, painful vaso-occlusive crisis events

triggered by sRBC aggregation and blood vessel clogging [4, 11, 12]. The problem thus lends

itself very naturally towards exploration in a microfluidic or adhesion assay setup. An impor-

tant line of investigation in such studies is the search for predictive indicators of disease sever-

ity in terms of biophysical rather than molecular markers [8, 13–15]. Microfluidic platforms

used for evaluation of sRBC adhesion dynamics have the advantage of being able to directly

use clinical whole blood taken from SCD patients [8, 11, 16–18]. This is a versatile laboratory

setup that allows one to mimic the complex vascular environment, and realistically explore the

multiple, interconnected factors at play. These devices are thus good candidate tools for batch

quantitative analyses of the mechanisms occurring in micro-vasculature prior to and during

crises, as well as for testing intervention mechanisms [8].

In this study, we focus on one particular microfluidic platform, the SCD Biochip [16, 19]—

a customizable, in-vitro adhesion assay where the microchannels can be functionalized with

various endothelial or sub-endothelial proteins, and integrated with a programmable syringe

pump unit that can implement physiologically relevant flow conditions. The analysis of the

data from clinical whole blood samples injected into the SCD Biochip and similar experimen-

tal approaches has been challenging, with a major bottleneck being manual counting and cate-

gorization of cells from complex phase contrast or bright field microscopic images. Manual

quantification of these images is a rigorous, time consuming process and inherently reliant on

skilled personnel. This makes it unsuitable for high throughput, operationally lightweight, eas-

ily replicable studies. For example, manual cell counting and classification into morphology

based sub-groups using the SCD Biochip platform tends to take upwards of 3 hours per image

for trained experts. The need for a reliable, fully automated image segmentation, classification,

and analysis scheme is thus paramount.

Here we present a standardized and reproducible image analysis workflow that eliminates the

need for user input and is capable of handling large amounts of data, by utilizing a machine-

learning-based framework that analyzes SCD BioChip assay images in a matter of minutes. Sev-

eral earlier studies have explored machine and deep learning approaches for automating SCD

image analysis [20–23] on RBC microscopy data for other pertinent segmentation and classifica-

tion problems—like distinguishing healthy from sickle RBCs [21–23], or quantifying shape fac-

tor metrics for identified sRBCs [20]. These studies illustrated the power of deep learning to

distinguish morphological details at different life stages of the cell, or identify sRBCs en masse

from whole blood smears. Building on this progress, the main contributions of our current study

are as follows: i) We use deep learning for the first time to analyze morphological details of

sRBCs in a context that closely mimics the micro-vasculature in vivo, with cells from whole

blood adhering to proteins under flow conditions. This involves solving a two-step problem: first

distinguishing sRBCs from other objects in the channel images, and then classifying them into

sRBC sub-types. ii) We correlate the morphological differences used in the sub-type classification

to biomechanical properties of the cells, which in turn are related to the degrees of HbS polymer-

ization and sickling that characterizes SCD disease progression. These two aspects—the auto-

mated analysis of sRBCs adhered to proteins in flow conditions and connecting the morphology

of adhered cells to the underlying biomechanics—are the key innovations of our approach.

Our processing pipeline has been set up to be of use as a high throughput tool with detec-

tion, tracking, and counting capabilities that could be harnessed to assess visual bio-markers of

disease severity. In the long term, this makes our workflow highly suitable for integration into

comprehensive monitoring and diagnostic platforms designed for patient specific clinical

PLOS COMPUTATIONAL BIOLOGY Integrating deep learning with microfluidics for classification of sickle red blood cells

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008946 November 29, 2021 3 / 24

https://doi.org/10.1371/journal.pcbi.1008946


interventions—a key component of emerging potentially curative therapies like allogenic

hematopoietic stem cell transplantation (HSCT) and targeted gene therapies [24–26].

1.2 Complexity of classification in whole blood imaging

While significant progress has been made in understanding SCD pathogenesis [4, 27], full

characterization of the complex interplay of factors behind occlusion events, and designing

appropriate advanced therapeutic interventions, remain significantly challenging. Part of the

challenge lies in recreating the conditions of the complex vascular environment, which is the

overall goal of the SCD BioChip around which our workflow is designed. Along with the abil-

ity to control aspects like applied shear forces and choice of channel proteins, the microfluidic

BioChips work with clinical whole blood samples. This lets the experimental setup approxi-

mate in vivo conditions as closely as possible, at the cost of significantly increasing the com-

plexity of the image processing problem. Here we describe the various categories of objects—

of both cellular and extra-cellular origin—that show up in our channel images. The segmenta-

tion process must thus be able to not only identify the sRBCS, but also distinguish them from

these other objects with a reliable degree of accuracy.

• RBCs: Healthy RBCs are easily identifiable from their circular shape with an apparent dim-

ple arising from a top-down view of the bi-concave cell profile (Fig 1A). Since the channels

are functionalized with proteins showing preferential adherence for sRBCs, very few healthy

RBCs show up in our images.

• Adhered sRBCs: SCD pathogenesis (progressive stages of HbS polymerization) causes dis-

eased RBCs to undergo deformation of their cell profile, going from a round to a more elon-

gated, spindle-like shape. Simultaneously, the bi-concavity starts distending outwards.

Examples of such partially sickled cells are shown in Fig 1B. Cells at a stage of advanced disease

progression, accelerated in hypoxic environments, become highly needle-like in shape, and

completely lose their concavity. Examples of such highly sickled cases are shown in Fig 1C.

These two categories of adhered sRBC also correlate with biomechanical characteristics of the

cell membrane, and we will label them by their membrane deformability, as described in more

detail in Section 1.3: deformable (partially sickled) and non-deformable (highly sickled) sRBCs.

• White blood cells (WBCs): Laminin, our choice of functionalization protein for this study, has

known sRBC binding capabilities, and shows little WBC adhesion. Thus our channel images

exhibit WBCs with far less frequency relative to sRBCs. The WBCs can be identified from a reg-

ular, round shape and smooth appearance, with varying degrees of internal detail (Fig 1D).

• Non-functionally adhered objects: The focal plane of the microscope objective in the exper-

iments is set to the protein-functionalized bottom of the channel. Objects adhered to this

surface are thus in focus. Due to the finite height of the channel, non-specifically adhered

objects outside the focal plane—stuck to the PMMA coverslip on the channel (Fig 1Ei–1Eiii)

or flowing by in motion (Fig 1Eiv)—show up as out-of-focus objects. They exhibit character-

istic diffraction rings or a blurred appearance.

• Other unclassified objects: Various categories of other objects can also appear in the

images. Examples include platelet clusters (Fig 1Fi), cellular debris from lysed cells (Fig 1Fii

and 1Fiii), and dirt/dust (Fig 1Fiv and 1Fv).

Along with these objects, the background itself can show considerable variation in luminos-

ity and level of detail, depending on the sample and experimenter. A useful processing work-

flow should be able to deal with these challenges as well.
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1.3 Establishing the biophysical basis for our classification problem

The observed range of heterogeneities in SCD clinical sub-phenotypes, stemming from the

same monogenic underlying cause, remain ill understood [1, 28]. This lack of understanding

sets the basis for the specific target problem that motivated our deep learning workflow. In a

2014 study from our group, Alapan et al. observed heterogeneity within sRBCs in terms of

deformability and adhesion strength [11]—two biophysical characteristics that are key

Fig 1. Object categories in our images. (A-C) The SCD pathogenetic pathway and changes undergone by the diseased

RBC. A: A healthy RBC with biconcavity. The latter appears as a dimple viewed from the top. B (i-iii): Partially sickled

sRBCs at increasing stages of sickling. The bi-concavity distends out to give a shallower dimple, and elongation in

profile. This is the category we identify as deformable sRBC (see Section 1.3). B (iv-vi): Additional representative image

variants of this category. C (i-iii): Highly sickled sRBCs. The dimple has completely disappeared and the shape is highly

elongated. We classify these into our non-deformable category. C (iv-vi): More variants in the non-deformable category.

Factors like local flow patterns, applied shear forces, and oxygen levels in the environment give rise to various shapes

(teardrop, star-like, amorphous) for different sRBCs. D: White blood cells (WBCs). E: Non-functionally adhered objects.

F: Other unclassified objects, like (i) platelet clusters, (ii-iii) lysed cells, (iv-v) dirt and dust. In our workflow types D-F

are classified together in the non-sRBC category.

https://doi.org/10.1371/journal.pcbi.1008946.g001
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hallmarks of SCD pathogenesis. This observation revealed two new sub-classes with distinct

morphologies, called deformable and non-deformable sRBCs (see Fig 1B and 1C). The cells

corresponding to the deformable class retain the RBC bi-concave detail, while the non-

deformable sRBCs completely lose the bi-concave feature. This bi-concave feature for deform-

able sRBCs is visible to the naked eye in most ideal cases (see Fig 1Bi, 1Bii and 1Bv). However,

based on the variety of configurations of the cell while adhered to the microchannel wall (see

Fig 1Biv and 1Bvi), in many cases detecting deformable sRBCs via human analysis can be com-

plicated and inconsistent. These difficulties underline the importance of implementing deep

learning models to quickly and consistently count and classify adhered cells.

As their name suggests, deformable sRBCs have relatively flexible shapes that can easily

deform under a variety of physiologically relevant flow conditions. However, as RBCs fully

progress through the sickling process, not only do the cells ultimately lose the concave dimple

feature, but they also become stiffer. These so-called non-deformable sRBCs are readily distin-

guishable from deformable RBCs based on their sharper edges along with their missing dim-

ples (see Fig 1C). Below in Results Section 3.1 we demonstrate that these morphological

differences correlate to significantly altered biomechanical properties in our experimental

setup. Furthermore, in addition to their deformability characteristics, these two types of cells

are also distinguishable in terms of their adhesion strength to endothelial and sub-endothelial

proteins under fluid forces, making them potentially significant for understanding the bio-

physics of vaso-occlusive crises. In subsequent experiments that integrated a micro-gas

exchanger with microfluidics, SCD heterogeneity is more dramatic under hypoxic conditions

[29], a known precursor for the onset of these crises.

A wealth of information can be extracted by studying the morphological heterogeneity of

sRBCs as a predictive indicator relevant to SCD pathogenesis and adhesion dynamics. Thus

our automated deep learning workflow focuses on the above described SCD heterogeneity:

counting sRBCs adhered to proteins in our microfluidic setup, and classifying these adhered

cells into deformable and non-deformable types. Because the input consists of complex

microscopy images of whole blood, the approach has to reliably disregard non-adhered sRBCs

(see Fig 1E) and other miscellaneous objects (see Fig 1F).

2 Materials and methods

2.1 Details of the experimental assay, image collection, computational

hardware and software

RBC adhesion was measured using an in vitro microfluidic platform developed by our group,

the SCD Biochip [16, 19]. The SCD Biochip is fabricated by lamination of a polymethylmetha-

crylate (PMMA) plate, custom laser-cut double-sided adhesive film which has a thickness of

50 μm (3M, Two Harbors, MN) and an UltraStick adhesion glass slide (VWR, Radnor, PA).

The width and the length of the channel are 4 mm and 25 mm, respectively. The glass slide is

treated with GMBS (N-γ-maleimidobutyryl-oxysuccinimide ester) to facilitate chemisorption

of the functional protein laminin. Laminin is a sub-endothelial protein with preferential adher-

ence to sRBCs over healthy RBCs [30], allowing us to focus on sRBC characterization. 15 μl of

whole blood collected from patients diagnosed with SCD at University Hospitals, Cleveland,

Ohio, was perfused into the microchannels functionalized with laminin (Sigma-Aldrich,

St. Louis, MO).

Images for the deep learning analysis were collected using the following protocol. Shear

stress was kept at 0.1 Pa, mimicking the average physiological levels in post-capillary venules.

A constant displacement syringe pump was used for injecting blood samples at a constant flow

rate of 1.85 μl/min, which is calculated based on the average blood viscosity of SCD samples as
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reported in an earlier study from our group [31]. After the non-adherent cells were removed

by rinsing the microchannels with 0.2% w/v bovine serum albumin containing saline buffer at

the same shear stress as blood, microfluidic images were taken by an Olympus IX83 inverted

motorized microscope. Mosaic images in phase-contrast mode with an integration time of 0.5

ms were recorded and then stitched together by Olympus CellSense live-cell imaging and anal-

ysis software coupled with an QImaging ExiBlue Fluorescense Camera. An Olympus 10x/0.25

long working distance objective lens was used for imaging. For the separate deformability anal-

ysis of Results Section 3.1, channel images were first captured under constant flow conditions

of 10 μL/min (which corresponds to a shear rate of about 100/s), and then subsequently cap-

tured again after the flow was turned off.

In terms of our computational hardware, we ran and trained our neural networks on an

NVIDIA GeForce RTX 2080Ti GPU, with a Intel Core i7–8700K 3.7 GHz 6-Core CPU, and 32

GBs of RAM. All codes are developed in Python 3 making use of the scikit-learn [32], NumPy

[33], Keras [34], and Tensorflow [35] libraries. Jupyter Notesbooks implementing our methods

are hosted on GitHub (https://github.com/hincz-lab/DeepLearning-SCDBiochip).

2.2 Overview of the image analysis workflow

We designed a bipartite network consisting of two individually trained neural networks that

work in tandem to quantify our whole channel microfluidic image data. The workflow con-

tains two phases of analysis that involve convolutional neural nets for cell segmentation/

detection and classification of adhered sRBCs. We found this bipartite approach helpful in

streamlining our workflow, trimming unnecessary operational bulk, and significantly improv-

ing performance metrics.

A schematic of the processing pipeline described here is shown in Fig 2. Each phase of the

pipeline has been built around a separate neural network. Since we are dealing with vast

amounts of complex microscopy data that contains a plethora of cellular objects under fluid

flow, we created Phase I to deal with object detection of adhered sRBCs exclusively. For

Phase II (Fig 2F) we focused on the biophysical classification of sRBCs into deformable and

non-deformable types. After collecting microchannel images from the SCD BioChip, the

workflow first implements Phase I, which consists of a convolutional neural net with an

architecture that downsamples and then upsamples the input image data into a segmentation

mask (Fig 2A–2C). The downsampling portion of the network constructs and learns feature

vectors as input data for the upsampling part of the neural network, allowing it to find seg-

mentation masks for the original input images [36]. After each convolution layer before a

downsampling or upsampling operation, we apply a batch normalization layer, improving

training time and acting as a regularizer [37]. With each layer implementation, these batch

normalizations introduce two learnable parameters for normalizing the corresponding inter-

mediate features. We also include copy and concatenations which incorporate skip connec-

tions from the encoder to the decoder layers. These operations have been motivated by the

success of U-Net, a semantic segmentation network heavily used in the biomedical image

segmentation community [38].

Given an input image, the network learns to assign individual pixels to three categories:

background, adhered sRBC, and non-functionally adhered / other. The non-functionally

adhered / other category largely involves detached or freely flowing cells (i.e. cells not attached

to proteins along the channel wall, as seen in Fig 1E), which are easily distinguishable from

adhered cells. We trained our encoder-decoder model using a loss function that combines the

cross-entropy loss LCE and Jaccard loss LJac. The LCE penalizes individual per-pixel segmenta-

tion, while the LJac penalizes the network based on the intersection over the union between the
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Fig 2. Overview of processing pipeline. A: SCD BioChip and cartoon illustration represents an in-vitro adhesion assay and

adhesive dynamics of sRBCs within a mimicked microvasculature. B: Generated input image fed into the Phase I network. C:

Phase I segmentation network predicts pixels belonging to adhered sRBCs, shaded red in the images. D: Drawing bounding

boxes around segmented objects. E: Extracting adhered objects into individual images. F: The input layer of the Phase II

classifier network receives an image from the Phase I detection network, then performs a series of convolutions and nonlinear

activations to finally output class predictions.

https://doi.org/10.1371/journal.pcbi.1008946.g002
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predicted and ground truth segmentation mask. The latter is useful for training networks on

segmentation tasks with imbalanced pixel classes.

The three-class pixel labeling scheme we have used for our Phase I segmentation network is

a first step toward capturing the complexity of features in our images. Ultimately however we

are interested in classifying entire cell objects as either deformable sRBC or non-deformable

sRBC rather than individual pixels corresponding to adhered cells. Thus further refinement is

necessary, motivating the introduction of our Phase II network. We can rely on the Phase I

network to accurately identify clusters of pixels as adhered sRBCs. The algorithm then com-

putes 32 × 32 pixel bounding boxes around such clusters, each box centered around the cluster

centroid (Fig 2D). The size of the box takes into account the average size of the sRBCs in our

channel images at 10x magnification, so that one box typically contains an entire cell. These

boxes then form a set of images (Fig 2E) that are the input for our Phase II network.

In Phase II (Section 2.4), the images are run through a convolutional neural net for bio-

physical classification. The neural network performs a series of convolutions and filtering

operations, which ultimately classifies the image as a deformable sRBC, non-deformable sRBC

or non-sRBC (Fig 2F). If the Phase I analysis was entirely error-free, there would of course be

no input images in Phase II corresponding to non-sRBC objects. But we include this category

to filter out the rare mistakes made by the Phase I analysis, further enhancing the accuracy of

the results at the completion of Phase II. Our dataset for Phase II consisted of a library of 6,863

manually classified cell images. Since this is a modestly-sized dataset for training an image clas-

sification network, we decided to implement transfer learning, an approach that can enhance

training in cases with limited data [39]. We found that the deep residual network called

ResNet-50 [40], pretrained on ImageNet [41], worked well in learning morphological features

for our biophysical classification task. Since the bottom and middle layers of neural networks

contain mostly general feature representations, which are then applicable to many datasets and

tasks, we can achieve a performance boost in our models by transferring model weights trained

on the ImageNet task. Even though our sRBC classification task is not the same as the Ima-

geNet task, we see benefits in terms of performance and training time [42, 43]. This is consis-

tent with earlier work, where it has been showed that transferring weights from a model

trained on ImageNet can boost performance on a biomedical image task [44]. We also con-

ducted a k-fold cross-validation protocol to estimate the accuracy of our machine learning

model on validation data taken from images not included in the network training, including

whole channel images from separate experiments. The details of the architectural design, data

set pre-processing and preparation, progress checkpoints, and evaluation metrics for each net-

work phase are presented in the next two sections.

2.3 Phase I: Detecting adhered sRBCs

This section is ordered as follows. First, we present the details of our neural network for

semantic segmentation with an architecture inspired by encoder-decoder models [36, 38]. We

describe our preprocessing procedure for expanding our training set with augmentation data

to overcome issues with imbalanced pixel classes during training. Finally, we illustrate overall

performance of the network in detecting adhered sRBC cells by presenting multiple relevant

evaluation metrics: pixel accuracy, intersection over union (IoU), and the Dice coefficient.

Preprocessing of microchannel images and preparation of the data set. Before we

implement the neural network for segmentation and detection, we record mosaic images of a

single whole channel and stitch each image together, leading to a larger image with pixel

dimensions 15,000 × 5,250. We then split the raw whole channel image into 3,500 equally-
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sized tiles by dividing the rectangular image with 100 vertical and 35 horizontal partitions,

leading to tiles with pixel dimensions 150 × 150.

For our optimal architecture, the network has an input layer with size 128 × 128 × 3, with

the first two dimensions representing height and width in pixels, and the last dimension repre-

senting three channels. Though our tile images were all grayscale, their format varied depend-

ing on the experimental procedure for recording the photo, with some having three channels

and some just one channel. In the latter case we copy the first channel and then concatenate

the copied channel two more times, creating images with three-channel depth. We then resize

the width and height of the tile from 150 × 150 × 3 to 128 × 128 × 3 with a bicubic interpolation

function, to match the input specifications of the network, and apply zero-centered normaliza-

tion. See Table 1 for a summary of the data set details.

Since we are using supervised learning, we require that the data set be manually labeled

beforehand. This was accomplished using the Image Labeler app in Matlab R2019a. As

described above, each pixel is assigned to one of three labels: background (0), adhered sRBC

(1), and non-functionally adhered / other (2). The segmentation masks with numerical labels

were then converted to one-hot encoded representations.

Overcoming imbalanced data for segmentation tasks via augmentation. A common

challenge in training semantic segmentation models is class imbalanced data [45]. A class

imbalance occurs when the frequency of occurrence of one or more classes characterizing

the data set differs significantly in representation, usually by several orders of magnitude,

from instances of the other classes. This problem results in poor network performance in

labeling the minority classes, a significant challenge for biomedical image segmentation in

which frequently the minority class is the one under focus. A typical example is in patholo-

gies such as inflammatory tissues or cancer lesions, where the aberrant tissue patch or lesion

is much smaller in size compared to the whole image. This issue leads to reduced capacity for

learning features that correlate to the lesions. For our microchannel images, the background

far outstrips the adhered sRBCs in representation, heavily skewing the data set. In the

absence of balancing, we find the network significantly misclassifies adhered sRBC pixels, in

some cases completely ignoring them. Since our interest lies in accurately identifying the

adhered cells, it is imperative to address this imbalance and improve accuracy for these

minority classes.

As a first step, we located image tiles within our initial dataset corpus that contained at least

one annotated adhered cell or non-functionally adhered cell / other. This procedure led to

finding a total of 877 images with at least one adhered cell and 360 images with at least one

non-functionally adhered / other cell. From here, we augmented these tiles by 90, 180, and 270

degrees, leading to a total of 2631 (adhered cell) and 1080 (non-functionally adhered / other)

new training dataset samples. Overall, by expanding the original dataset corpus with this aug-

mentation protocol to 7211 unique samples, we were able to help balance the training proce-

dure. In addition, by rotating images we can introduce new cell orientations that are physically

relevant features for the model to learn.

Table 1. Details of data sets used for training / validating the neural networks in the two phases of our workflow.

For both Phase I and II, we use k-fold cross validation with k = 5, and split the respective data sets so that the training

and validation sets correspond to approximately 80% and 20% of the whole dataset for each fold.

Phase Data Set

I 3,500 pixel-labeled tiles (each 128 × 128 pixels)

II 6,863 single-cell images (each 32 × 32 pixels) representing:

3,362 deformable sRBC, 1,449 non-deformable sRBC, 2,052 non-sRBC

https://doi.org/10.1371/journal.pcbi.1008946.t001
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Furthermore, to prevent overfitting we introduced additional data augmentations during

each epoch of the training. These were applied only to the training subset [46], with the valida-

tion subset unaltered. We utilized both random horizontal and vertical reflections for this aug-

mentation process: an image was reflected with a probability of 50% during each iteration. We

also augmented the images with random rotations of angles between the values -90 and 90

degrees. With the combination of random reflections and rotations, new cell orientations were

introduced. More importantly, since the neural network constantly was presented different

features for each epoch, the model had a lower chance of overfitting on the training set.

Constructing the Phase I network architecture. Our Phase I network is an encoder-

decoder model which implements convolutional blocks that contain filters, nonlinear activa-

tion functions (ReLU), batch normalization, down (max), and up (transpose) sampling layers.

The final layer is a softmax which predicts a one hot encoded tensor, corresponding to one of

the three classes: background, adhered sRBC, and non-functionally adhered / other. For our

loss function, we choose to combine the binary cross-entropy LCE and Jaccard loss (i.e. inter-

section over union loss) LJac, expressed as:

L ¼ LCE þ LJac; ð1Þ

where

LCE ¼ �
1

N

XN

a¼1

X3

i¼1

pðaÞi logðqðaÞi Þ þ ð1 � pðaÞi Þ logð1 � qðaÞi Þ
� �

;

LJac ¼ � log
PN

a¼1

P3

i¼1
pðaÞi qðaÞi

2N �
PN

a¼1

P3

i¼1
pðaÞi qðaÞi

 !

� � logðJÞ:

ð2Þ

Here N represents the number of data points in a batch to be analyzed, pðaÞi the ith compo-

nent of the one hot encoded ground truth probability for the αth data point, and qðaÞi the corre-

sponding predicted softmax probability component. LJac is the negative logarithm of the

Jaccard index J, whose numerator is a measure of the size of the intersection between the

ground truth segmentation mask and the predicted segmentation mask. The denominator is a

measure of the size of the union between these two masks. Note that the 2N in the denomina-

tor represents the total size of the two masks (union plus intersection), so subtracting the inter-

section (the expression in the numerator) from 2N gives the size of the union. Furthermore,

we compared our encoder-decoder segmentation model, which is tuned and optimized on our

sRBC dataset, against the most recent state-of-the-art segmentation model called HR-net [47],

which introduces novel connections between high-to-low resolutions in parallel during train-

ing. For both model architectures, the initialized weight parameters were sampled from a ran-

dom normal distribution. We find that our encoder-decoder model performs on par with HR-

net on the validation datasets in terms pixel accuracy, IoU, and Dice coefficient metrics (see

Fig A in S1 Text). As described below, however, the encoder-decoder analyzes images

almost twice as fast as HR-net, and hence was our preferred segmentation approach. The full

details of the Phase I network architectures are shown in https://github.com/hincz-lab/

DeepLearning-SCDBiochip.

2.4 Phase II: Classification into morphological subtypes

Setting up the Phase II network architecture. The structure of our Phase II cell classifier

network was adapted from ResNet-50, the very deep residual neural network [40]. Residual

neural networks implement skip connections in the hopes of avoiding vanishing gradients.
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Our implementation of ResNet-50 is pre-trained on the reduced ImageNet ILSVRC database,

consisting of over 1 million training images and belonging to 1000 different classes [41].

The overall microfluidic image data set size is still relatively small for our complex classifica-

tion task, which requires learning subtle morphological features in cells of various sizes,

shapes, and orientations. We thus choose to utilize a transfer learning framework [39]: rather

than initializing the network with randomly chosen weights, we start with weights pre-trained

on ImageNet, allowing us to achieve a higher starting accuracy on our own data set, faster con-

vergence, and better asymptotic accuracy. To tailor the network for our purposes, we added a

global 2D average pooling operation, a fully connected layer with a width corresponding to the

previous number of feature maps before applying a pooling layer, and swapped out the final

fully-connected layer of original ResNet-50 model; in particular, we swapped out the original

1000 neuron output layer with a layer of three output neurons corresponding to the three

object classes (Fig 3). As described below, we also checked our results against two other possi-

ble choices for the Phase II network: a vanilla convolutional neural network without pre-train-

ing, and a pre-trained network based on Xception [48] rather than ResNet-50. Xception

Fig 3. Phase II network. A schematic of the transfer learning workflow used to train our classifier network. We

employ the ResNet-50 architecture and start with weights pre-trained on the 1000 category reduced ImageNet ILSRVC

database. The final fully connected learnable classification layer is swapped out for a 3 class classification layer suited to

our problem.

https://doi.org/10.1371/journal.pcbi.1008946.g003
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implements depthwise separable convolutions, in contrast to ResNet-50 which uses skip con-

nections. More details on all these architectures can be found in the Fig B in S1 Text.

Data set preparation for the Phase II classifier. As mentioned earlier, the input images

for Phase II are 32 × 32 pixel images corresponding to single cells (see Table 1 for data set

details). Ideally these are all adhered sRBCs, but there is a tiny subset of non-sRBC objects, a

source of error that the Phase II network is designed to mitigate. The details of constructing

these single-cell images are as follows. Starting with the three-class segmentation mask gener-

ated at the end of Phase I, we binarize the pixels in these images according to our adhered

sRBC pixel class by assigning 1 to sRBC pixels and 0 to non-sRBC pixels. We delete any small

objects that form connected clusters of 1 pixels where the cluster size is smaller than 60. This

threshold allows us to remove debris from the images, while being small enough relative to

the range of sRBC cell sizes to preserve clusters that are actually sRBCs. We compute the cen-

troids of the remaining clusters, ideally corresponding to sRBC cells, and extract 32 × 32 pixel

bounding boxes centered at each cluster centroid (see Fig 2D and 2E). Before we input these

extracted cell images into the Phase II neural network for biophysical classification, we resize

the image from 32 × 32 × 3 to the corresponding ResNet-50 input layer size of 224 × 224 × 3,

and apply zero-centered normalization. Among the models we used for comparison, Xception

also takes input images of size 224 × 224 × 3, while for the vanilla network we chose an input

layer size corresponding to the original image size 32 × 32 × 3. See Fig B in S1 Text for more

details.

The training set for our supervised learning in Phase II consists of 6,863 single-cell images

in three object categories: deformable sRBC (3,362 images), non-deformable sRBC (1,449

images), and non-sRBC (2,052 images). In terms of curating our data set, we initially started

with a batch of individual objects that were manually extracted from a large set of channel

images displaying different luminescence and granularity features that covered the broad spec-

trum of sample and experimental variance (see Fig 1A). However, after we completed our

Phase I network, we expanded the data set to include the single-cell images generated by Phase

I, though we manually verified the labels to correct any errors. Our data set also covers differ-

ent physiological conditions like normoxia and hypoxia, which allows the resulting image pro-

cessing pipeline to handle data from a wide range of SCD assays.

Phase II training details. The data set was split randomly into 80% training and 20% vali-

dation subsets, and the network was trained with maximum epoch number 30 and minibatch

size 32. Each training session had 6450 iterations, and thus 215 iterations per epoch. Similar to

the Phase I training protocol, we utilized data augmentation on the training subset to expand

the training data set corpus, allowing us to implement powerful networks (e.g. ResNet50) with-

out overfitting [46]. Once again, we utilized both horizontal and vertical random reflections

for the augmentation process: an image was reflected with a probability of 50% during each

iteration. We also augmented the images with random rotations of angles between the values

-90 and 90 degrees. Since both deformable and non-deformable sRBCs have heterogeneous

morphologies and our experimental microfluidic setup introduces various cellular orientations

along the plane of the microchannel (see Fig 1B and 1C), the rotations and flips help the neural

network anticipate this variety. Lastly, we implemented a zero-centered normalization for

each image sample.

3 Results and discussion

3.1 Cellular deformability analysis

To validate the connection between adhered sRBC morphology and deformability in our

experimental setup, we analyzed pairs of images of the microfluidic channel first under flow
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(10 μL/min) and then under no flow conditions. These images were examined to look for

sRBCs that had not detached or moved significantly between the two image captures, to allow

for legitimate comparison. The relative change in cell aspect ratio (AR) under the two flow

conditions was then analyzed for each cell (Fig 4), as a measure of cellular deformability. We

have defined the cellular AR as the ratio of the estimated minor to the major axis. A set of 14

cells was identified and manually classified as seven deformable and seven non-deformable

according to the morphological characteristics described in Section 1.2. After analyzing the

cellular AR of the adhered RBCs under the two flow conditions, we found that the morphology

of the sRBCs correlates to the deformability characteristics. The cells classified morphologically

as deformable showed a mean change in AR of about 20% on average between flow and no

flow. For those classified as non-deformable sRBCs, the average percent change in AR was

close to zero. Results are summarized in Fig 4. Given the heterogeneity of the cell shapes and

errors introduced by the pixelation of the images, the AR changes of each subtype have a distri-

bution, but the difference in the average AR between the two distributions is statistically signif-

icant (p = 0.00057). These results reproduce the link between morphology and deformability

observed in Alapan et. al. [11] in exactly the same experimental setup we use to do the deep

learning image analysis. Thus the classification into subtypes produced by the algorithm

should be strongly correlated with a key biomechanical feature of the individual sRBCs.

3.2 Phase I network performance

Segmentation performance evaluation. To quantify overall performance of our Phase I

network, we computed two of the most commonly used metrics for semantic segmentation

[49]: (i) the Jaccard index J, defined in Eq (2), also known as the intersection over union (IoU);

(ii) the closely related Dice coefficient D, which is the twice the intersection divided by the

total number of pixels. It can be expressed in terms of J as D = 2J/(1 + J). We have also tracked

the pixel accuracy in classifying individual pixels on both training and validation sets.

Our Phase I network is successful: it is able to achieve state-of-the-art accuracy in segmenta-

tion of channel images from whole blood experiments compared to similar studies in literature

Fig 4. Cell deformability analysis. A: Schematic for estimation of change in cell aspect ratio (AR) between flow and no

flow conditions. (i-ii) show a deformable type cell, and (iii-iv) a nondeformable. B: Mapping deformability to

morphology: Cells visually identified as the deformable morphological subtype show significantly higher percentage

change in cell AR between flow and no flow conditions compared to the non-deformable subtype.

https://doi.org/10.1371/journal.pcbi.1008946.g004
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[20, 21], reaching 0.997±0.001 pixel accuracy, 0.991±0.003 IoU, and 0.996±0.002 Dice coeffi-

cient values on the validation set across all 5 k-fold hold-outs (see Fig 5A for example Phase I

input tiles and Fig 5B for performance metrics). These metric values are quite similar to the

HR-net model [47] trained on the same task, which achieves the following values: 0.997±0.001

pixel accuracy, 0.981±0.006 IoU, and 0.991±0.003 Dice. More details on the training metrics

both of these model architectures can be found in Fig A in S1 Text. The main difference

between the two models is analysis time: the encoder-decoder takes an average of 72±10 sec-

onds to process one whole channel, compared to 143±8 seconds for HR-net. Given that

processing speed is an important consideration in analyzing high-throughput adhesion experi-

ments, we thus preferred the encoder-decoder architecture for segmentation. Care must be

taken in interpreting these Phase I metrics, and they should not be naively used as an adequate

standalone measure of the overall performance. As is commonly the case, we found that the

bulk of our error arose from segmentation of cell boundaries rather than the cell itself. Since

we are more concerned about locating centroids of the predicted segmentation masks, to crop

and extract sRBC images for classification in Phase II, the cell boundary errors do not signifi-

cantly affect the final results in our pipeline.

3.3 Phase II network performance

To quantify overall performance of our Phase II network, we computed the performance met-

rics [50] defined below for a given class i, where i corresponds to either deformable sRBC,

Fig 5. Phase I network performance metrics. (A) Two examples of typical input image tiles for the Phase I network, along

with the corresponding manually labeled segmentation mask assigning each pixel in the image to one of three pixel classes

(listed on the right). A(i) shows a tile with deformable sRBCs and non-functionally adhered / other objects, while A(ii) shows

one with a non-deformable sRBC and other object. (B) (i) Training and validation history of the total cross entropy / Jaccard

loss function L for the Phase I network. The solid curve corresponds to the average loss over 5 folds, while the same colored

light band denotes the spread (standard deviation) in the loss over these folds. Training history is shown in red and

validation in blue (purple indicates overlap). (ii) Final 5-fold averaged performance metric values for both training and

validation reached by our Phase I network at the end of training over 50 epochs. Uncertainties indicate spread around the

mean of each metric over the 5 folds.

https://doi.org/10.1371/journal.pcbi.1008946.g005
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non-deformable sRBC, or non-sRBC cell:

PrecisionðiÞ ¼
TPi

TPi þ FPi
;

RecallðiÞ ¼
TPi

TPi þ FNi
;

AccuracyðiÞ ¼
TPi þ TNi

Total
;

ð3Þ

Here TPi, TNi, FPi, and FNi denote the number of true positive, true negative, false positive

and false negative outcomes in classifying a given cell image into class i. “Total” represents the

total number of images involved in the evaluation. Precision indicates the agreement between

predicted and target class labels, while recall measures the effectiveness of the neural network’s

classification ability when identifying cell classes.

During learning, the network weights are optimized to make the class predictions for the

training data set as accurate as possible. However, depending on the training set and the sto-

chastic nature of the optimization process, the accuracy of the network on the testing set can

vary. Attention to this issue becomes imperative when dealing with smaller data sets for classi-

fication tasks, like in our Phase II case. k-fold cross-validation is one approach to validate the

overall performance of the network in this scenario. The general procedure starts by shuffling

the total data set before splitting it into training/validation subsets, to generate an ensemble of

k such unique subsets (or folds). We choose k = 5, with an 80/20% split for training/validation

sets. Each fold consists of a unique combination of 20% of the images as the hold-out (valida-

tion) set, and the remaining 80% as the training set. Our combined data set of 6863 total

images thus generates five unique folds with training and validation sets containing 5488 and

1372 images each (accounting for rounding off). Finally, we fit the neural network parameters

on the training set and evaluate the performance on the validation set for five unique runs.

Then for each single run, we collect the training and validation accuracy, listed in Table 2. We

also show the mean and standard deviation of all the folds, with the small standard deviation

being an indicator that our training did not suffer from overfitting. Fig 6A shows example

Phase II input images for each classifier category, while Fig 6B shows metrics highlighting the

typical performance, which averaged to 0.960±0.003 accuracy, 0.962±0.003 precision, and

0.959±0.004 recall in object classification over the folds. Furthermore, in terms of loss, accu-

racy, precision and recall during training, our fine-tuned ResNet-50 model outperforms the

vanilla and fine-tuned Xception model variants on the validation set, averaged over the k-fold

sets (see Table A and Fig C in S1 Text).

Table 2. Results from the 5-fold cross-validation of the Phase II network.

Fold No. Training Accuracy Validation Accuracy Training Time

1 0.982 0.957 33 min 43 sec

2 0.978 0.962 33 min 36 sec

3 0.982 0.959 32 min 20 sec

4 0.982 0.957 33 min 21 sec

5 0.981 0.966 33 min 09 sec

Mean 0.981±0.0.002 0.960±0.003 33 min 26 sec

https://doi.org/10.1371/journal.pcbi.1008946.t002
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3.4 Interpreting Phase II classification results with activation maps

To assess which features the fine-tuned ResNet-50 network used to distinguish adhered

deformable and non-deformable cells, we generated class activation maps (CAMs) [51, 52]. At

the lower and middle portion of the Phase II architecture, which corresponds to the ResNet-50

backbone, the model contains mostly convolutional layers that effectively act as Gabor filters

after training [42], capable of general feature detection. The top part of the network (see Fig B

in S1 Text) then does a global average 2D pooling and softmax to output probability predic-

tions for the three classes. To visualize which image features most contributed to the classifica-

tion decision, the CAM procedure focuses on this top portion of the network. Let fijk be the

feature map output from the ResNet-50 backbone, with dimensions 7 × 7 × 2048. The global

average pooling result is then a length 2048 vector vk ¼ 1

49

P
i;j fijk that is input into softmax as

wmkvk + bm, where wmk is a 3 × 2048 matrix of weights, and bm is a length 3 bias vector. To gen-

erate the CAM for the mth object class, we calculate cðmÞij ¼
P

kwmk fijk, which corresponds to a

coarse-grained 7 × 7 heat map of the image, indicating which regions contributed most to the

classification decision for the mth class. After resizing to 32 × 32 pixels and translating the

CAM magnitudes to an RGB color map, the resulting CAMs are overlayed on examples of the

original images in Fig 7. Intriguingly, the highlighted features were similar to those used by

human experts in making classification decisions: the dimple in partially deformable sRBCs

and the sharp endpoints/edges for nondeformable sRBCs. Additionally, we can test the impor-

tance of the features by modifying the images to block out certain regions. Blocking out the

features highlighted by the CAMs (such as the dimples for the deformable sRBCs) reduces the

confidence of the network in the class assignment (indicated by the probabilities in each

panel). Overall, this analysis illustrates that our fine-tuned ResNet-50 model focuses on rele-

vant physical features in carrying out classification. This also hints at the potential of the net-

work to generalize on never-before-seen channel images by leveraging these general cellular

features.

3.5 Processing pipeline: Manual vs. machine learning performance

After both Phase I and II are complete in terms of training, we are ready for the final test of

our processing pipeline, pitting the machine learning (ML) approach against 3 human experts

Fig 6. Phase II network performance metrics. (A) Representative examples of single-cell images for each classifier category, the

input for Phase II. (B) (i) Training and validation history of the loss function for the Phase II network. The solid curve corresponds to

the average loss over 5 folds, while the same colored light band denotes the spread (standard deviation) in the loss over these folds.

Training history is shown in red and validation in blue (purple indicates overlap). (ii) Final 5-fold averaged performance metric

values for both training and validation reached by our Phase II network at the end of training over 30 epochs. Uncertainties indicate

spread around the mean of each metric over the 5 folds.

https://doi.org/10.1371/journal.pcbi.1008946.g006
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in detecting, classifying, and counting adhered sRBCs for a set of 19 whole channel images dis-

playing a wide variety of cells. All these 19 channels consisted of separate experiments from

those used during training, and hence were never previously seen by the network. For this

final test, we used a community of neural networks, called an ensemble model, in predicting

segmentation masks and classifying/counting cells, improving performance and accuracy on

test samples. In general, these ensemble models are known to perform better on a task than

any single one model within the ensemble [53]. The Phase I and II ensemble models were

assembled by collecting the 5 neural networks trained during k-fold cross-validation, and the

final ensemble output was the just the average of the probabilities output from each of the indi-

vidual networks. Importantly, this competition between human and ML will highlight the

workflow’s true effectiveness for potentially replacing manual labor within biophysical studies

of SCD. Results are illustrated in Fig 8. Error bars along the ML axis are obtained from the pre-

cision metrics of our classifier. Error bars on the manual axis are estimated from variance in

repeated manual analyses on a set of whole channel images. Panel A shows results for total

adhered sRBC cell count in each image, which can be taken as a proxy for overall object identi-

fication accuracy. We see how a very high degree of agreement is reached between our ML and

human experts, with an estimated R2 statistic value of 0.992. Note how the manual error bars

increase with sample size. This has serious implications for manual analyses of high cell count

samples. A host of factors like longer duration of analysis time, mental fatigue of the experi-

mentalist, etc. can affect these numbers. An ML-based automated classifier is immune to these

human limitations. Panel B and C show comparison results for subcounts of deformable and

non-deformable sRBCs in each sample image, indicative of classification accuracy. Excellent

agreement is reached for deformable cells, with corresponding R2� 0.987. For non-deform-

able cells—a category significantly harder to identify because of the high degree of cross-corre-

lating features with several objects in our “other” category—decent ML-manual agreement is

Fig 7. Interpreting the fine-tuned ResNet-50 model. Class activation maps for representative cell types, highlighting

the cell features that allow the Phase II network to classify each cell as either deformable or non-deformable sRBC.

These heat maps are a measure of the model’s attention [51, 52], where red corresponds to the highest activation, i.e.

attention. Top rows show the original images, while the bottom rows show activation heat maps. (A-C) correspond to

the deformable sRBC class, while (D-F) correspond to the non-deformable sRBC class. For each panel consisting of cell

images and class activation maps, the first column represent the original cell image with no implemented data

augmentation. The next column, however, is the same cell image with additional data augmentations like reflection

and rotation. The last 2 columns for each panel contain single cell images intentionally modified to remove certain

regions (black blocks) in order to confuse the network. The number in each panel is the probability assigned by the

network of the cell being a deformable (A-C) or a non-deformable (D-F) sRBC. For the deformable sRBCs in (A-C),

the network still classifies accurately when part of the dimple is blocked, but the probability drops when the entire

dimple is blocked. Hence for these types of cells the dimple is the key distinguishing feature. Analogously for the non-

deformable sRBC cell in (D-F) the network needs to see at least one sharp endpoint or majority of the edge to classify

reliably.

https://doi.org/10.1371/journal.pcbi.1008946.g007
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still achieved, with R2� 0.834. In addition, our pipeline with a fine-tuned ResNet-50 model in

Phase II outperforms the vanilla and Xception variants in all three categories in terms of the

R2: total, deformable, and non-deformable counts (Table B in S1 Text). This gives us confi-

dence in our chosen architecture. We note that our human experts showed significant variance

among themselves in categorizing these kinds of images. The SCD pathogenetic pathway

exhibits a continuum of physiological features, which we are trying to sort into discrete catego-

ries. Thus some level of disagreement is expected, particularly for images with borderline fea-

tures between classes (e.g. Fig 1B(iii) and 1C(i)). The role of the ML then goes beyond simply

matching human performance. It takes on the role of a standardized arbiter for these border-

line images, and improves overall consistency in results compared to human performance,

where random, spur-of-the-moment classification decisions would play a sizeable role.

4 Conclusion

We designed and tested a deep learning image analysis workflow for a microfluidic SCD adhe-

sion assay that reduces the need for expert user input, enabling the processing of large amounts

of image data with highly accurate results. For this study our target problem was identifying

sRBCs in complex, whole channel bright field images using clinical whole blood samples, and

distinguishing between their morphological subtypes (deformable and non-deformable).

These subtypes are in turn strongly correlated with sRBC biomechanical properties, making

the image analysis method a fast, high throughput proxy for the much more laborious cell-by-

cell direct measurement of membrane deformability. We demonstrated that our network per-

formed well in terms of accuracy when pitted against trained personnel, while improving anal-

ysis times by two orders of magnitude.

This proof-of-concept study focuses on sRBC deformable and non-deformable classifica-

tion, but this is by no means the only feature worth exploring. We are working on generalizing

our workflow to examine patient heterogeneities along more expanded metrics like white

blood cell (WBC) content, WBC versus sRBC content, emergent sub-types and so on. Clinical

heterogeneities among SCD-affected patients constitute a critical barrier to progress in treating

Fig 8. Manual vs machine learning (ML) performance. Results from pitting count estimates from 19 whole

microchannel images processed through our automated two-part processing pipeline vs. manual characterization.

Error bars along the manual axis are obtained from variance in repeated manual counts on a set of test images. The red

line is the line of perfect agreement. Error bars on ML counts are estimated from the precision rates reached by our

Phase II classifier network in predicting true positive outcomes in relevant categories on a validation set (see Fig 6). R2

statistic values, indicating goodness of agreement between manual and ML counts, are indicated in each graph. A:

Results for total sRBC (deformable + nondeformable) cell counts. This plot is illustrative of the high degree of accuracy

achieved by our ML in identifying sRBCs. B and C: Results for number of sRBCs in each channel image classified

manually and by ML as deformable or non-deformable respectively. This measures the agreement reached in

classification of the two morphological categories.

https://doi.org/10.1371/journal.pcbi.1008946.g008
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the disease, and understanding them will be crucial in designing targeted patient-specific cura-

tive therapies. Increasing the frequency of therapeutic interventions, novel screening technolo-

gies, and better management of both acute short term and chronic SCD complications have

gone a long away in increasing patient survival. The challenge lies in achieving targeted

patient-specific administration of appropriate therapies, due to the wide heterogeneity among

clinical sub-phenotypes. Developing tools for consistent and comprehensive monitoring of

heterogeneities among patient groups is thus paramount. Emerging potentially curative thera-

pies like allogenic hematopoietic stem cell transplantation (HSCT) and targeted gene therapy

are also promising and becoming more widely available [24–26], but mostly in developed

countries. These treatments need to be streamlined and standardized, requiring fast and

affordable monitoring tools for assessment of efficacy checkpoints and endpoint outcomes

along multiple relevant metrics. The workflow presented here, designed for integration with

the SCD BioChip microfluidic assay, is a first step toward the ultimate goal of delivering such

an ML-enabled SCD monitoring platform.

Supporting information

S1 Text. Supporting information. The supporting information contains figures and tables

detailing performance comparisons of our approach with alternative Phase I and Phase II

network architectures. Fig A: Comparative performance of the Phase I network against

another recent segmentation model, HR-net. Training and validation history of performance

metrics for the two networks, with our encoder-decoder in the top row, and HR-net in the bot-

tom row. The solid curve corresponds to the 5-fold mean of each metric, while the same col-

ored light band denotes the spread in the corresponding metric over these folds. Training

history is shown in red and validation in blue (purple indicates overlap). To see the architec-

ture details for both the encoder-decoder and HR-net, follow this link: https://github.com/

hincz-lab/DeepLearning-SCDBiochip/blob/master/Demonstrate_architectures.ipynb. Fig B:

Phase II architecture. A schematic outline of the architectures for our choice of Phase II net-

work (ResNet-50) and two other networks used for performance comparison: a vanilla net-

work and Xception. We appended a global average pooling layer along with a fully connected

layer so that we can fine-tune the ImageNet pretrained models, e.g. ResNet-50 and Xception

backbones, on our sickle red blood cell task. All of the tensor shapes shown in the cartoon illus-

tration correspond to the input features, intermediate features, and output probability vector.

Fig C: Comparative performance of Phase II network against two other models—a vanilla

network and Xception. Training and validation history of performance metrics for the three

networks are shown here. The solid curve corresponds to the mean training history over 5

folds, while the same colored light band denotes the spread in the corresponding metric over

these folds. Training history is shown in red and validation in blue (purple indicates overlap).

Table A: Final metric values (averaged over 5 folds) reached by each Phase II network at

the end of training. This corresponds to the 30th, 50th and 30th epochs for ResNet-50, the

vanilla network, and Xception respectively. Uncertainties indicate spread (standard deviation)

around the mean of each metric over the 5 folds. The best achieved metric value over all net-

works is shown in bold, for both training and validation. While Xception does marginally bet-

ter than ResNet-50 in training, it overfits more—validating our final choice of ResNet-50 for

Phase II network based on overall performance. Table B: Comparison of overall evaluation

metrics for various pipeline configurations (Phase I + Phase II) on the sample set of 19

whole channel images. R2 values are shown for the machine learning vs. manual count com-

parison in each case, similar to main text Fig 8. Table legend: ED: Encoder-decoder; CE
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Jaccard: Cross entropy Jaccard loss; All: total sRBC counts; Def: deformable sRBC counts;

NDef: non-deformable sRBC counts; Proc. time: total processing time for all 19 channels.

(PDF)

Acknowledgments

The authors acknowledge with gratitude the contributions of patients and clinicians at Seid-

man Cancer Center (University Hospitals, Cleveland).

Author Contributions

Conceptualization: Niksa Praljak, Shamreen Iram, Utku Goreke, Gundeep Singh, Umut A.

Gurkan, Michael Hinczewski.

Data curation: Niksa Praljak, Shamreen Iram, Utku Goreke, Gundeep Singh, Ailis Hill.

Formal analysis: Niksa Praljak, Shamreen Iram, Utku Goreke, Gundeep Singh, Ailis Hill.

Funding acquisition: Umut A. Gurkan, Michael Hinczewski.

Investigation: Niksa Praljak, Shamreen Iram, Utku Goreke, Gundeep Singh.

Methodology: Niksa Praljak, Shamreen Iram, Utku Goreke, Gundeep Singh, Umut A. Gur-

kan, Michael Hinczewski.

Project administration: Umut A. Gurkan, Michael Hinczewski.

Resources: Utku Goreke, Ailis Hill, Umut A. Gurkan.

Software: Niksa Praljak, Shamreen Iram, Gundeep Singh.

Supervision: Umut A. Gurkan, Michael Hinczewski.

Validation: Niksa Praljak, Shamreen Iram, Gundeep Singh, Michael Hinczewski.

Visualization: Niksa Praljak, Shamreen Iram, Michael Hinczewski.

Writing – original draft: Niksa Praljak, Shamreen Iram, Utku Goreke, Gundeep Singh, Umut

A. Gurkan, Michael Hinczewski.

Writing – review & editing: Niksa Praljak, Shamreen Iram, Utku Goreke, Gundeep Singh,

Umut A. Gurkan, Michael Hinczewski.

References
1. Kato G, Piel F, Reid C, Gaston M, Ohene-Frempong K, Krishnamurti L, et al. Sickle cell disease. Nat

Rev Dis Primers. 2018; 4:1–50. https://doi.org/10.1038/nrdp.2018.10

2. Modell B, Darlison M. Global epidemiology of haemoglobin disorders and derived service indicators.

Bulletin of the World Health Organization. 2008; 86:480–487. https://doi.org/10.2471/BLT.06.036673

PMID: 18568278

3. GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national

incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and

territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet.

2019; 392:1789–1858.

4. Rees D, Williams T, Gladwin M. Sickle-cell disease. Lancet. 2010; 376:2018–2031. https://doi.org/10.

1016/S0140-6736(10)61029-X PMID: 21131035

5. Yuan C, Quinn E, Kucukal E, Kapoor S, Gurkan U, Little J. Priapism, hemoglobin desaturation, and red

blood cell adhesion in men with sickle cell anemia. Blood Cells Mol Dis. 2019; 79:102350. https://doi.

org/10.1016/j.bcmd.2019.102350 PMID: 31404907

PLOS COMPUTATIONAL BIOLOGY Integrating deep learning with microfluidics for classification of sickle red blood cells

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008946 November 29, 2021 21 / 24

https://doi.org/10.1038/nrdp.2018.10
https://doi.org/10.2471/BLT.06.036673
http://www.ncbi.nlm.nih.gov/pubmed/18568278
https://doi.org/10.1016/S0140-6736(10)61029-X
https://doi.org/10.1016/S0140-6736(10)61029-X
http://www.ncbi.nlm.nih.gov/pubmed/21131035
https://doi.org/10.1016/j.bcmd.2019.102350
https://doi.org/10.1016/j.bcmd.2019.102350
http://www.ncbi.nlm.nih.gov/pubmed/31404907
https://doi.org/10.1371/journal.pcbi.1008946


6. Telen M, Malik P, Vercellotti G. Therapeutic strategies for sickle cell disease: towards a multi-agent

approach. Nat Rev Drug Discov. 2019; 18(2):139–158. https://doi.org/10.1038/s41573-018-0003-2

PMID: 30514970

7. Kucukal E, Ilich A, Key N, Little J, Gurkan U. Adhesion of Sickle RBCs to Heme-Activated Endothelial

Cells Correlates with Patient Clinical Phenotypes. Blood. 2017; 130 (Supplement I):959. https://doi.org/

10.1182/blood.V130.Suppl_1.959.959

8. Alapan Y, Fraiwan A, Kucukal E, Hasan M, Ung R, Kim M, et al. Emerging point-of-care technologies

for sickle cell disease screening and monitoring. Expert Rev Med Devices. 2016; 13(12):1073–1093.

https://doi.org/10.1080/17434440.2016.1254038 PMID: 27785945

9. Man Y, Kucukal E, An R, Watson QD, Bosch J, Zimmerman PA, et al. Microfluidic assessment of red

blood cell mediated microvascular occlusion. Lab on a Chip. 2020; 20:2086–2099. https://doi.org/10.

1039/d0lc00112k PMID: 32427268

10. Noomuna P, Risinger M, Zhou S, Seu K, Man Y, An R, et al. Inhibition of Band 3 tyrosine phosphoryla-

tion: a new mechanism for treatment of sickle cell disease. Br J Haematol. 2020;. https://doi.org/10.

1111/bjh.16671 PMID: 32346864

11. Alapan Y, Little J, Gurkan U. Heterogeneous red blood cell adhesion and deformability in sickle cell dis-

ease. Sci Rep. 2014; 4:7173. https://doi.org/10.1038/srep07173 PMID: 25417696

12. Li X, Dao M, Lykotrafitis G, Karniadakis G. Biomechanics and biorheology of red blood cells in sickle

cell anemia. J Biomech. 2017; 50:34–41. https://doi.org/10.1016/j.jbiomech.2016.11.022 PMID:

27876368

13. Wood D, Soriano A, Mahadevan L, Higgins J, Bhatia S. A biophysical indicator of vaso-occlusive risk in

sickle cell disease. Sci Transl Med. 2012; 4(123):123ra26. https://doi.org/10.1126/scitranslmed.

3002738 PMID: 22378926

14. Alapan Y, Matsuyama Y, Little J, Gurkan U. Dynamic deformability of sickle red blood cells in microphy-

siological flow. Technology. 2016; 4(02):71–79. https://doi.org/10.1142/S2339547816400045 PMID:

27437432

15. Alapan Y, Little J, Gurkan U. Heterogeneous red blood cell adhesion and deformability in sickle cell dis-

ease. Sci Rep. 2014; 4:7173. https://doi.org/10.1038/srep07173 PMID: 25417696

16. Alapan Y, Kim C, Adhikari A, Gray K, Gurkan-Cavusoglu E, Little J, et al. Sickle cell disease biochip: a

functional red blood cell adhesion assay for monitoring sickle cell disease. Transl Res. 2016; 173:74–

91. https://doi.org/10.1016/j.trsl.2016.03.008 PMID: 27063958

17. Kucukal E, Little J, Gurkan U. Shear dependent red blood cell adhesion in microscale flow. Integr Biol.

2018; 10(4):194–206. https://doi.org/10.1039/C8IB00004B PMID: 29557482

18. Kucukal E, Ilich A, Key N, Little J, Gurkan U. Red blood cell adhesion to heme-activated endothelial

cells reflects clinical phenotype in sickle cell disease. Am J Hematol. 2018; 93(8):1050–1060. https://

doi.org/10.1002/ajh.25159 PMID: 29905377

19. Little J, Alapan Y, Gray K, Gurkan U. SCD-Biochip: a functional assay for red cell adhesion in sickle cell

disease. Blood. 2014; 124:4053. https://doi.org/10.1182/blood.V124.21.4053.4053

20. Xu M, Papageorgiou D, Abidi S, Dao M, Zhao H, Karniadakis G. A deep convolutional neural network

for classification of red blood cells in sickle cell anemia. PLoS Comput Biol. 2017; 13:e1005746. https://

doi.org/10.1371/journal.pcbi.1005746 PMID: 29049291

21. de Haan K, Koydemir H, Rivenson Y, Tseng D, Van Dyne E, Bakic L, et al. Automated screening of

sickle cells using a smartphone-based microscope and deep learning. NPJ Digit Med. 2020; 3:76.

https://doi.org/10.1038/s41746-020-0282-y PMID: 32509973

22. Chy TS, Rahaman MA. A Comparative Analysis by KNN, SVM & ELM Classification to Detect Sickle

Cell Anemia. In: 2019 International Conference on Robotics, Electrical and Signal Processing Tech-

niques (ICREST); 2019. p. 455–459.

23. Alzubaidi L, Fadhel MA, Al-Shamma O, Zhang J, Duan Y. Deep Learning Models for Classification of

Red Blood Cells in Microscopy Images to Aid in Sickle Cell Anemia Diagnosis. Electronics. 2020; 9

(427):1–18.

24. Gluckman E, et al. Sickle cell disease: an international survey of results of HLA-identical sibling hemato-

poietic stem cell transplantation. Blood. 2017; 129:1548–56. https://doi.org/10.1182/blood-2016-10-

745711 PMID: 27965196

25. Frangoul H, et al. CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia. New Engl J

Med. 2020; 383(23). PMID: 33283989

26. Esrick EB, et al. Post-Transcriptional Genetic Silencing of BCL11A to Treat Sickle Cell Disease. New

Engl J Med. 2020; 383(23). https://doi.org/10.1056/NEJMoa2029392 PMID: 33283990

27. Bunn H. Pathogenesis and Treatment of Sickle Cell Disease. N Engl J Med. 1997; 337:762–769.

https://doi.org/10.1056/NEJM199709113371107 PMID: 9287233

PLOS COMPUTATIONAL BIOLOGY Integrating deep learning with microfluidics for classification of sickle red blood cells

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008946 November 29, 2021 22 / 24

https://doi.org/10.1038/s41573-018-0003-2
http://www.ncbi.nlm.nih.gov/pubmed/30514970
https://doi.org/10.1182/blood.V130.Suppl_1.959.959
https://doi.org/10.1182/blood.V130.Suppl_1.959.959
https://doi.org/10.1080/17434440.2016.1254038
http://www.ncbi.nlm.nih.gov/pubmed/27785945
https://doi.org/10.1039/d0lc00112k
https://doi.org/10.1039/d0lc00112k
http://www.ncbi.nlm.nih.gov/pubmed/32427268
https://doi.org/10.1111/bjh.16671
https://doi.org/10.1111/bjh.16671
http://www.ncbi.nlm.nih.gov/pubmed/32346864
https://doi.org/10.1038/srep07173
http://www.ncbi.nlm.nih.gov/pubmed/25417696
https://doi.org/10.1016/j.jbiomech.2016.11.022
http://www.ncbi.nlm.nih.gov/pubmed/27876368
https://doi.org/10.1126/scitranslmed.3002738
https://doi.org/10.1126/scitranslmed.3002738
http://www.ncbi.nlm.nih.gov/pubmed/22378926
https://doi.org/10.1142/S2339547816400045
http://www.ncbi.nlm.nih.gov/pubmed/27437432
https://doi.org/10.1038/srep07173
http://www.ncbi.nlm.nih.gov/pubmed/25417696
https://doi.org/10.1016/j.trsl.2016.03.008
http://www.ncbi.nlm.nih.gov/pubmed/27063958
https://doi.org/10.1039/C8IB00004B
http://www.ncbi.nlm.nih.gov/pubmed/29557482
https://doi.org/10.1002/ajh.25159
https://doi.org/10.1002/ajh.25159
http://www.ncbi.nlm.nih.gov/pubmed/29905377
https://doi.org/10.1182/blood.V124.21.4053.4053
https://doi.org/10.1371/journal.pcbi.1005746
https://doi.org/10.1371/journal.pcbi.1005746
http://www.ncbi.nlm.nih.gov/pubmed/29049291
https://doi.org/10.1038/s41746-020-0282-y
http://www.ncbi.nlm.nih.gov/pubmed/32509973
https://doi.org/10.1182/blood-2016-10-745711
https://doi.org/10.1182/blood-2016-10-745711
http://www.ncbi.nlm.nih.gov/pubmed/27965196
http://www.ncbi.nlm.nih.gov/pubmed/33283989
https://doi.org/10.1056/NEJMoa2029392
http://www.ncbi.nlm.nih.gov/pubmed/33283990
https://doi.org/10.1056/NEJM199709113371107
http://www.ncbi.nlm.nih.gov/pubmed/9287233
https://doi.org/10.1371/journal.pcbi.1008946


28. Ballas S, Mohandas N. Sickle Red Cell Microrheology and Sickle Blood Rheology. Microcirculation.

2010; 11:209–225. https://doi.org/10.1080/10739680490279410

29. Kim M, Alapan Y, Adhikari A, Little J, Gurkan U. Hypoxia-enhanced adhesion of red blood cells in

microscale flow. Microcirculation. 2017; 24(5):e12374. https://doi.org/10.1111/micc.12374 PMID:

28387057

30. Lee S, Cunningham M, Hines P, Joneckis C, Orringer E, Parise L. Sickle Cell Adhesion to Laminin:

Potential Role for the 5 Chain. Blood. 1998; 92(8):2951–2958. https://doi.org/10.1182/blood.V92.8.

2951 PMID: 9763582

31. Kucukal E, et al. Whole blood viscosity and red blood cell adhesion: Potential biomarkers for targeted

and curative therapies in sickle cell disease. Am J Hematol. 2020; 95(11):1246–56. https://doi.org/10.

1002/ajh.25933 PMID: 32656816

32. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine learn-

ing in Python. J Mach Learn Res. 2011; 12:2825–2830.

33. Walt Svd, Colbert SC, Varoquaux G. The NumPy array: a structure for efficient numerical computation.

Comput Sci Eng. 2011; 13(2):22–30. https://doi.org/10.1109/MCSE.2011.37

34. Chollet F, et al. Keras; 2015. https://github.com/fchollet/keras.

35. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, et al. Tensorflow: A system for large-scale

machine learning. In: 12th {USENIX} Symposium on Operating Systems Design and Implementation

({OSDI} 16). IEEE; 2016. p. 265–283.

36. Badrinarayanan V, Kendall A, Cipolla R. Segnet: A deep convolutional encoder-decoder architecture

for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2017; 39

(12):2481–2495. https://doi.org/10.1109/TPAMI.2016.2644615 PMID: 28060704

37. Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covari-

ate shift. preprint arXiv:150203167. 2015;.

38. Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation.

Proc Medical Image Computing and Computer-Assisted Intervention. 2015; p. 234–241.

39. Pratt L, Mostow J, Camm C. Direct Transfer of Learned Information Among Neural Networks. Proc

Ninth National Conference on Artificial Intelligence. 1991; 2:584–589.

40. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Proc IEEE Conference on

Computer Vision and Pattern Recognition. 2016; p. 770–778.

41. Deng J, Dong W, Socher R, Li L, Li K, Fei-Fei L. Imagenet: A large-scale hierarchical image database.

IEEE Conference on Computer Vision and Pattern Recognition. 2009; p. 248–255.

42. Yosinski J, Clune J, Bengio Y, Lipson H. How transferable are features in deep neural networks? In:

Advances in neural information processing systems; 2014. p. 3320–3328.

43. Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and

semantic segmentation. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition; 2014.

p. 580–587.

44. Chelghoum R, Ikhlef A, Hameurlaine A, Jacquir S. Transfer Learning Using Convolutional Neural Net-

work Architectures for Brain Tumor Classification from MRI Images. In: IFIP International Conference

on Artificial Intelligence Applications and Innovations. Springer; 2020. p. 189–200.

45. Haixiang G, Yijing L, Shang J, Mingyun G, Yuanyue H, Bing G. Learning from class-imbalanced data:

Review of methods and applications. Expert Syst Appl. 2017; 73:220–239. https://doi.org/10.1016/j.

eswa.2016.12.035

46. Shorten C, Khoshgoftaar TM. A survey on image data augmentation for deep learning. J Big Data.

2019; 6(1):60. https://doi.org/10.1186/s40537-019-0197-0

47. Wang J, Sun K, Cheng T, Jiang B, Deng C, Zhao Y, et al. Deep high-resolution representation learning

for visual recognition. IEEE Trans Pattern Anal Mach Intell. 2020;.

48. Chollet F. Xception: Deep learning with depthwise separable convolutions. In: Proc. IEEE Conference

on Computer Vision and Pattern Recognition; 2017. p. 1251–1258.

49. Minaee S, Boykov Y, Porikli F, Plaza A, Kehtarnavaz N, Terzopoulos D. Image segmentation using

deep learning: A survey. arXiv preprint arXiv:200105566. 2020;.

50. Sokolova M, Lapalme G. A systematic analysis of performance measures for classification tasks. Inform

Process Manag. 2009; 45(4):427–437. https://doi.org/10.1016/j.ipm.2009.03.002

51. Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A. Learning deep features for discriminative

localization. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition; 2016. p. 2921–

2929.

PLOS COMPUTATIONAL BIOLOGY Integrating deep learning with microfluidics for classification of sickle red blood cells

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008946 November 29, 2021 23 / 24

https://doi.org/10.1080/10739680490279410
https://doi.org/10.1111/micc.12374
http://www.ncbi.nlm.nih.gov/pubmed/28387057
https://doi.org/10.1182/blood.V92.8.2951
https://doi.org/10.1182/blood.V92.8.2951
http://www.ncbi.nlm.nih.gov/pubmed/9763582
https://doi.org/10.1002/ajh.25933
https://doi.org/10.1002/ajh.25933
http://www.ncbi.nlm.nih.gov/pubmed/32656816
https://doi.org/10.1109/MCSE.2011.37
https://github.com/fchollet/keras
https://doi.org/10.1109/TPAMI.2016.2644615
http://www.ncbi.nlm.nih.gov/pubmed/28060704
https://doi.org/10.1016/j.eswa.2016.12.035
https://doi.org/10.1016/j.eswa.2016.12.035
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1016/j.ipm.2009.03.002
https://doi.org/10.1371/journal.pcbi.1008946


52. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-cam: Visual explanations from

deep networks via gradient-based localization. In: Proc. IEEE International Conference on Computer

Vision; 2017. p. 618–626.

53. Opitz D, Maclin R. Popular ensemble methods: An empirical study. J Artif Intell Res. 1999; 11:169–198.

https://doi.org/10.1613/jair.614

PLOS COMPUTATIONAL BIOLOGY Integrating deep learning with microfluidics for classification of sickle red blood cells

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008946 November 29, 2021 24 / 24

https://doi.org/10.1613/jair.614
https://doi.org/10.1371/journal.pcbi.1008946

	Integrating Deep Learning with Microfluidics for Biophysical Classification of Sickle Red Blood Cells Adhered to Laminin
	Recommended Citation
	Authors

	Integrating deep learning with microfluidics for biophysical classification of sickle red blood cells adhered to laminin

