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3-D Microwell Array System for 
Culturing Virus Infected Tumor Cells
Rami El Assal1, Umut A. Gurkan2,3, Pu Chen1, Franceline Juillard4, Alessandro Tocchio1, 
Thiruppathiraja Chinnasamy1, Chantal Beauchemin4, Sebnem Unluisler2, Serli Canikyan2, 
Alyssa Holman1, Srikar Srivatsa1, Kenneth M. Kaye4 & Utkan Demirci1,2,5

Cancer cells have been increasingly grown in pharmaceutical research to understand tumorigenesis 
and develop new therapeutic drugs. Currently, cells are typically grown using two-dimensional (2-D) 
cell culture approaches, where the native tumor microenvironment is difficult to recapitulate. Thus, 
one of the main obstacles in oncology is the lack of proper infection models that recount main features 
present in tumors. In recent years, microtechnology-based platforms have been employed to generate 
three-dimensional (3-D) models that better mimic the native microenvironment in cell culture. Here, 
we present an innovative approach to culture Kaposi’s sarcoma-associated herpesvirus (KSHV) infected 
human B cells in 3-D using a microwell array system. The results demonstrate that the KSHV-infected B 
cells can be grown up to 15 days in a 3-D culture. Compared with 2-D, cells grown in 3-D had increased 
numbers of KSHV latency-associated nuclear antigen (LANA) dots, as detected by immunofluorescence 
microscopy, indicating a higher viral genome copy number. Cells in 3-D also demonstrated a higher rate 
of lytic reactivation. The 3-D microwell array system has the potential to improve 3-D cell oncology 
models and allow for better-controlled studies for drug discovery.

Cancer remains a devastating condition that affects human health and quality of life1–4. Immune compromised 
patients tend to be more susceptible to developing malignancy, including Kaposi’s sarcoma (KS), primary effu-
sion lymphoma (PEL), and multicentric Castleman’s disease5,6. Such conditions are tightly linked with Kaposi’s 
sarcoma-associated herpesvirus (KSHV, also known as Human Herpesvirus-8 (HHV-8)). KSHV, a gamma-2 
herpesvirus, is an oncogenic virus with a double-stranded deoxyribonucleic acid (DNA) genome6–9. KSHV infec-
tion is primarily latent, including in tumor cells6,10. During latent infection, the virus persists as a multiple copy, 
extrachromosomal episome6. The latency-associated nuclear antigen (LANA) is one of several genes expressed 
during latency9. LANA is responsible for maintaining the viral episomal genome. LANA mediates KSHV DNA 
replication prior to cell division, and segregates viral episomes to progeny cell nuclei11. A small percent of infected 
tumor cells undergo lytic infection6. During lytic infection, the full panel of KSHV genes is expressed and virions 
are produced10. In addition, certain viral proteins expressed during lytic infection may contribute to tumorigene-
sis through activating signaling cascades in latently infected cells10. KSHV has shown the ability to infect various 
cell types, including oral epithelial cells, endothelial cells, or B-cells12–14. These cells are routinely grown in adher-
ent or non-adherent (suspension) two-dimensional (2-D) cultures. 2-D cultures lack many features of the native 
microenvironment in vivo. As a result, many in vivo physiologic properties that may be crucial to defining a cell’s 
growth and gene expression, such as signaling through certain pathways (e.g., Notch), can be altered15–17. When 
growing tumor cells in 2-D, such differences may hinder the reproduction of important in vivo features15,18,19.

Three-dimensional (3-D) tumor cultures have shown the ability to better mimic the native cancer microen-
vironment by enhancing the development of more complex cell-cell interactions and signaling pathways19,20. 
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Various 3-D culturing techniques (e.g., hanging drop, microfluidic systems, bioprinting, assembly, spinner flasks, 
and rotary system) have been successfully used to generate 3-D tumor models19–33. For example, hanging drop 
approach has been increasingly used to generate 3-D models due its simplicity; however, it is still challenging to 
use this method to provide long-term cultures. The rotary system and the spinner flasks are suitable for long-term 
cultures; however, they are unable to generate consistently sized 3-D constructs and require special equipment34. 
Further, bioprinting and assembly are fabrication techniques that may require a subsequent culturing system (i.e., 
bioreactors) to grow and mature cells19,35. While microfluidic systems have shown promise in 3-D culture, high 
fluid flow induced-shear stress can affect cell physiology22. A detailed description of advantages and disadvan-
tages of each technique is shown in Supplementary Information (SI) Table S1. Although such techniques have 
been successfully applied for tissue engineering and regenerative medicine applications (e.g., generation of 3-D 
models of stem cells36 and hepatocytes37,38), only a few were utilized to culture virus-infected tumor cells18. In one 
report, a 3-D in vitro model for KSHV infection was developed using spheroids embedded in clotted-fibrin gel15. 
The system provides controlled experimental conditions to investigate KSHV infection and tumorigenesis. As 
an alternative approach, microwell array systems have emerged as robust and inexpensive tools to generate 3-D 
models36,37; however, they have never been explored to culture virus-infected tumor cells.

This study describes the development of an innovative approach to culture virus infected tumor cells (i.e., 
KSHV-infected BJAB cells) using a 3-D microwell array system. The infected cells were allowed to grow for 15 
days with or without puromycin selection, for which the recombinant virus encodes resistance. We performed 
computational fluid dynamic analysis to investigate the shear stress on cells in the microwells. We also detected 
markers of viral latent and lytic infection. This microwell array system provides an efficient and scalable method 
that generates cell aggregates.

Results and Discussion
In this study, we used a microwell array platform to culture KSHV- infected BJAB cells in 2-D or 3-D and 
observed infection status (Fig. 1). The platform was fabricated based on multiwell format using micromolding of 
PEG (Fig. 1a). PEG is a synthetic multifunctional hydrogel that is nontoxic, approved by FDA, and broadly used 
in biomedical research including drug discovery and tissue engineering39. PEG was used in this system due to its 
innate cell-repellant and non-adhesive properties40. The cells do not adhere to PEG, which helps to encourage 
cell to cell contact41. Lack of cell attachment to PEG facilitates their retrieval from the microwells for additional 
analyses. We characterized the PEG hydrogels by measuring the mass swelling ratio. The mass swelling ratio 
measured at the equilibrium was approximately 13.6; this value is in agreement with literature (Figure S1)42,43. The 
photomicrographs demonstrate that the microwells can be made with high-pattern fidelity, suggesting that the 
system can be scaled up without affecting the shape and size of the microwells (Figure S2). To evaluate the repro-
ducibility of the fabrication process, three different sizes (150 μ m (diameter) ×  150 μ m (height); 300 μ m ×  300 μ m; 
and 450 μ m ×  450 μ m) of microwells were fabricated. The results demonstrated that the 450 μ m microwells were 
more consistent in size and shape compared to 150 μ m and 300 μ m (Fig. 1b). In addition, the 450 um microwells 
are less likely to deform during peeling off the poly(dimethylsiloxane) (PDMS) mold as opposed to 150 μ m and 
300 μ m, which results in less microwell-to-microwell variation.

Cells in the microwells are subjected to hydrodynamic shear stress, which is induced during medium 
exchange. To investigate the shear stress on the cells in the microwells during a medium exchange, we performed 
a computational fluid dynamic analysis using Comsol MultiphysicsTM. We calculated the Reynolds number to 
predict flow regimes (e.g., laminar or turbulent flow) in the microwells and it is expressed as follows,

ρ
µ

=Re vL
(1)

where ρ is fluid density, v is the maximum velocity of the fluid during medium exchange, L is the travelled length 
of the medium in the microwell, and 𝜇 is the dynamic viscosity of the fluid. At room temperature, fluid density 
and dynamic viscosity are 998.2 kg·m−3 and 1.002 ×  10−3 Pa·s, respectively. The Reynolds number under varied 
flow velocities and microwell dimensions is shown in Fig. 2a. As the Reynolds number is far less than 2100, lam-
inar flow occurs on the microwells44.

We modeled the process of medium exchange as a laminar flow over a fluid-filled microwell. The model was 
solved using Navier-Stokes equations for incompressible Newtonian fluids. The opening of the microwell was set 
as inlet and outlet conditions with a flow velocity of 10 mm s−1. The microwell wall and bottom is set as a no-slip 
boundary condition. Flow streamlines indicate a circulation flow generated in the microwell during medium 
exchange (Fig. 2b). The flow velocity further indicates a rapid decrease in local velocity as the distance from the 
top of the microwell increases. Shear stress, for all Newtonian fluids in laminar flow, can be mathematically cal-
culated by

τ µ=
∂
∂
u
l (2)

where 𝑢 is fluid velocity and l is the distance from the bottom no-slip wall of the boundary to the desired location. 
Simulated shear stress in the middle z-y coordinate section and multiple z-sections is given in Fig. 2c. We inves-
tigated shear stress on the opening of the microwell along the y coordinate under varied microwell dimensions. 
We found that shear stress decreased as the microwell dimension increased, all under the same medium exchange 
velocity (Fig. 2d). The microwells with dimensions of 450 μ m in both diameter and depth, results in maximum 
shear stress of ~0.5 Pa at the top layer of the microwell, which is lower than the maximum shear stress of 150 μ m 
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and 300 μ m microwells at the same location. Thus, based on this simulation data and the size distribution results 
(Fig. 1b), the 450 μ m microwell platform was chosen to be the basis of our subsequent experiments.

To evaluate the feasibility of growing virus-infected cells in 3-D, KSHV-infected BJAB and uninfected (con-
trol) BJAB cells were seeded into the microwells and cultured both with and without puromycin selection (Figs 1c 
and 3). The cells were seeded at a low-density (≤ 100 cells/microwell) to allow for direct observation and mon-
itoring of proliferation during the experiment. Although precise control over the number of seeded cells per 
microwell is a challenge, it was clear that increasing the cell concentration when seeding the microwells resulted 
in increased numbers of cells settling into microwells45. The cell occupancy in a microwell array has been pre-
viously investigated both theoretically and experimentally46,47. In our microwell system, as the microwell size is 
much larger than the cell size, the cells already present in a given microwell will not affect addition of new cells 
to that same microwell. The possibility (f) of a microwell containing n cells can be described by the equation of 
Poisson distribution as below,

λ λ
=

λ−
f n e

n
( ; )

! (3)

n

where λ is the average number of cells per microwell area on the glass slide. As λ increases the Poisson distribu-
tion approaches the Gaussian form. The peak or maximum of the Poisson distribution corresponds to the mean 
(λ). Thus, the average cell number in microwells can be modulated by the cell seeding density on the glass slide.

Once cells settle inside the microwells, they do not displace during exchange of cell culture media. The cells 
can be harvested without compromising their viability48 by tilting the platform at 45°, and gently washing the 
microwells. One of the advantages of this platform is that it provides control over size and shape of the cell aggre-
gates that can be generated (SI Figure 2) compared to suspension culture. In contrast, suspension culture does 
not typically lead to cell aggregation, and instead, cells proliferate only in two dimensions over a flat surface, often 
with little cell-to-cell contact. Therefore, 2-D culture differs greatly from the platform here, which allows cells to 

Figure 1. 3-D microwell array system for culturing infected tumor cells. (a) Fabrication of microwell array 
system for culturing BJAB cells infected with Kaposi’s sarcoma-associated herpesvirus (KSHV). The schematic 
represents the molding process to fabricate a microwell system using a synthetic hydrogel (i.e., polyethylene 
glycol (PEG). Glass slides were coated with 3-(trimethoxysilyl)propyl methacrylate (TMSPMA, yellow); these 
would serve as the base for the PEG (blue) microwells. The PEG cast was constructed using a PDMS mold 
with protruding cylindrical posts of 450 μ m in diameter and height (brown), which was then photo-cured 
with ultraviolet (UV) light. After the creation of the PEG microwells, the cells were seeded into the 450 μm 
microwells (instances of brightfield and fluorescent images of the seeded microwells are shown). (b) Boxplot 
shows the various sizes of the microwells that were fabricated. The data show that 450 μ m microwells are 
more consistent compared to 300 μ m and 150 μ m. Thus, 450 μ m microwells were chosen for subsequent cell 
seeding. Results are expressed as median and minimum and maximum values with (25th–75th) interquartiles. 
Connecting brackets between the individual groups indicate statistically significant results (p <  0.05 and N, 
number of array systems  =  3; n, number of microwells  =  20). (c) Flowchart showing the experimental design of 
the present study. Infected and uninfected (control) BJAB cells were cultured in microwells (3-D) or T-75 tissue 
culture flasks (2-D) with or without (W/O) puromycin selection.
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grow in aggregates determined by the size and shapes of the constructed microwells, and with cell-to-cell contact 
occurring in three dimensions.

Subsequent to cell seeding, a series of brightfield photomicrographs were obtained of each microwell for 
15 days. The results demonstrated that there was no significant difference in the proliferation rate between 
KSHV-infected BJAB cells cultured with or without puromycin selection (Figs 3a and 4a). This result is expected 
since the recombinant KSHV expresses the puromycin resistance gene. Proliferating cells grew efficiently 
until they filled the entire microwell (at around day 15), and subsequently began to spill out from the microw-
ells (SI Figure 3). This cell outgrowth occurs due to the non-adhesive properties of PEG, and results in some 
non-homogenous cell models after day 15. The initial location of cell growth in the microwell depends on the 
location of seeded cells, until all cell aggregates in the microwell merge together to form one model. Table S2 
summarizes the volumes of the 3-D models that were generated using different sizes of microwells. The size of the 
microwells can mediate differential lineage commitments. For example, it was reported that culturing embryoid 
bodies in relatively large microwells, such as 450 μ m, can mediate cardiogenic lineage differentiation, whereas 
culturing them in 150 μ m mediates endothelial lineage differentiation36.

In the absence of puromycin selection, infected BJAB cells tend to lose viral episomes as cells proliferate12. 
This situation is similar to that of KS, in which cells are universally infected with KSHV in vivo, but when cultured 
ex vivo, lose KSHV infection. The reasons for this observation are likely related to different microenvironmental 
conditions including cell-cell interaction, cell-ECM interaction, growth factors, as well as physical and chemical 
factors in vivo compared to ex vivo19. Cells cultured in 3-D may often acquire nutrients by diffusion (especially 
the cells located in the middle), unlike cells cultured in 2-D, which receive nutrients directly from the media19.

To evaluate the infected status of the cultured KSHV-infected cells, a series of fluorescent photomicrographs 
were obtained (Fig. 3b). Expression of GFP indicates KSHV infection12. The results demonstrated that a substan-
tial number of infected cells grown in microwells without puromycin selection still expressed GFP for up to 15 
days in culture (Fig. 4b). The results of the control groups are shown in Fig. 4c and SI Figure 4a. Although GFP 
expression was still present at 15 days, the intensity was less compared with cells kept under puromycin selec-
tion, consistent with loss of infection in some cells in the absence of puromycin. In addition, more GFP positive 
cells were present with puromycin selection compared with no selection in 2-D culture at 15 days (Fig. 3b). To 
confirm KSHV infection in cells at 15 days, we collected cells and used fluorescence microscopy to detect KSHV 
LANA, which concentrates to dots at sites of KSHV genomes9 (Fig. 5a). As expected, nuclear LANA dots (red) 
were present in both 2-D and 3-D culture. In the absence of puromycin, fewer LANA dots were present in nuclei, 
and more cells lacked both LANA and GFP expression, indicating loss of infection. Overall, without puromycin, 
~70% of cells were infected compared to greater than 90% in the presence of puromycin. Notably, there were 

Figure 2. Numerical fluid dynamics simulation. (a) Reynolds number under varying microwell size and flow 
velocity. (b) Velocity field at the middle layer of y-z and x-z planes, and bottom layer of x-y plane are plotted. 
Arrows indicate flow streams. Scale bar indicating 100 μm is shown. (c) Shear stress in the microwell at multiple 
x-y planes and the middle y-z plane. Scale bar indicating 200 μm is shown. (d) Shear stress at the intersection of 
the top x-y plane and the middle y-z plane in size-varied microwells. The microwells in the simulation have equal 
height and diameter. Black, blue, and red dotted lines indicate microwells with a diameter of 150 μ m, 300 μ m, and 
450 μ m, respectively. The data show that the shear stress at the top of the 450 μ m microwell is less than the shear 
stress on 300 μ m and 150 μ m microwells. Therefore, 450 μ m microwells were chosen for subsequent cell seeding.
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~2–3 fold more LANA dots present in infected cells in 3-D compared to 2-D culture (Fig. 5a), indicating a higher 
KSHV genome copy number since each LANA dot corresponds to a viral genome. Consistent with this finding, 
both in the presence or absence of puromycin, the 3-D cultures had much brighter fluorescence compared to the 
2-D cultures (Figs 3 and 5). We also investigated lytic reactivation at 15 days by detecting the KSHV lytic protein 
product, ORF59 (Fig. 5b). Reactivation from BJAB-KSHV cells was very inefficient, and even after induction 
with 12-O-tetradecanoyl phorbol-13-acetate (TPA) and sodium butyrate fewer than 1% of cells expressed ORF59 
(data not shown). However, we observed that ~3 fold more cells expressed ORF59 in 3-D versus 2-D culture in the 
presence of puromycin as there were ~15 ORF59 expressing cells in 3-D compared to ~5 ORF59 expressing cells 
in 2-D (with similar numbers of total cells plated per slide). In the absence of puromycin, fewer cells underwent 
reactivation in 3-D, perhaps related to lower episome copy number, but there still appeared to be more ORF59 

Figure 3. KSHV infected BJAB cells maintained in 3-D 450 μm microwells or 2-D suspension, both with 
(+) and without (−) puromycin selection. (a) Brightfield photomicrographs of infected BJAB cells grown for 
15 days. Images were taken at 3-day intervals, beginning with the day of seeding. Scale bars indicating 200 μm 
are shown. (b) Fluorescent photomicrographs of infected BJAB cells grown for 15 days. Expression of GFP 
(green) by the infected cells, which were cultured in 2-D or 3-D, indicates KSHV infection. Scale bars represent 
200 μ m. In the absence of puromycin selection, less fluorescence was observed over time in cells in 2-D and 3-D 
culture due to loss of KSHV infection. This is a representative figure for the subsequent quantification figure 
(i.e., Fig. 4). Scale bars indicating 200 μm are shown.
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expressing cells compared to 2-D culture without puromycin. These findings of increased episome copy number 
and increased lytic reactivation are similar to previous observations made by Cheng et al. when KSHV infected 
primary endothelial cells were grown in 3-D after embedding spheroids in fibrin gel15. Therefore, it is likely that 
autocrine and paracrine signaling in the 3-D microenvironment contributes to enhanced infection with higher 
viral genome copy per cell and a higher rate of lytic reactivation, perhaps more similar to conditions present  
in vivo49,50.

In this study, we report the ability to culture human KSHV-infected BJAB cells in 3-D using a microwell 
format. The use of microwell-based culture for the purpose of growing virus-associated tumor cells in 3-D has 
not been well studied or applied. One challenge of this concept is the difficulty to extend the culture for a longer 
period (> 3 weeks) of time without the detachment of the PEG hydrogel from the TMSPMA coated slides as a 
result of the weakening of the attachment between the PEG microwells and the glass. However, stability of the PEG 
attachment can be enhanced by etching the glass surface with a mixture of sulfuric acid and hydrogen peroxide 
(piranha etch)51 as well as treating the surface with oxygen plasma to form an oxygen-rich layer52,53. Furthermore, 
the present method has the potential to allow further investigation of the recovered KSHV-infected BJAB cells 
after long term culture, such as for flow cytometry or polymerase chain reaction. Morever, this approach would 
provide the basis for future work to further investigate the biology of KSHV infected cells grown in 3-D, including 
potential effects on cytokine production. In addition, investigation of other infected cell types, such as endothelial 
cells, would be a logical next step for the applications of this approach. This innovative platform can also be used 
to generate micro-tissues (e.g., 3-D embryonic bodies and neurospheres) for regenerative medicine applications 
and discovery, as well as for the development of new cell-based assays and toxicological studies.

Figure 4. Quantification of microwell surface area covered by cells grown in 3-D 450 μm microwell.  
(a,b) Determination of microwell surface area covered by KSHV infected BJAB cells with (+ ) and without (−) 
puromycin selection using bright field (a) and fluorescent (b) micrographs. The plotted data in Fig.4a,b are 
based on quantification of the micrographs in Fig. 3a,b. (a) The quantification of microwell surface area covered 
by cells shows that infected cells grew through day 15 (N, number of array systems ≥ 3; n, number of microwells 
≥ 6). Representative photomicrographs are shown in Fig. 3a. (b) The quantification of GFP expression shows 
that infected cells persisted through day 15 (N≥3; n≥ 6). Representative photomicrographs are shown in Fig. 3b. 
(c) Determination of surface areas of uninfected BJAB (control) cells seeded in 3-D microwells with (+) and 
without (− ) puromycin selection using bright field photomicrographs (N≥2; n≥ 4). Uninfected BJAB cells grew 
without puromycin selection, but not in the presence of puromycin, since these cells are puromycin sensitive. 
Representative photomicrographs are shown in Figure S4a Error bars in the figures represent the standard 
error of the mean. Connecting brackets between the individual groups indicate statistically significant results 
(p <  0.05).
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Conclusion
Here, we demonstrate the ability to grow KSHV-infected human BJAB cells in 3-D cultures. The cells were cul-
tured in PEG-based 3-D microwell array system for up to 15 days. Compared with culture in 2-D, cells in 3-D had 
more nuclear LANA dots, indicating a higher KSHV genome copy number, and cells in 3-D also underwent lytic 
reactivation at a higher rate. The 3-D microwell array system has the potential to improve cell culture strategies 
and allow for better-controlled studies for drug discovery and experimental biology.

Materials and Methods
Fabrication of PDMS Molds. Poly(dimethylsiloxane) (PDMS) molds were fabricated by thoroughly mixing 
(10:1) of elastomer and curing agent (SYLGARD 184 Silicone Elastomer Kit; Sigma). The mixture was poured on 
a silicon master patterned with SU-8 photoresist, degassed in a vacuum chamber for 30 minutes, and then allowed 
to cure at 70 °C for 2 hours. The silicon master (positive structure) has circular depressions, which were replicated 
into PDMS (negative structure) for the following fabrication steps. Three different silicon masters were used to 
prepare different sizes of PDMS molds with cylindrical protrusions of: 150 μ m (diameter) ×  150 μ m (height); 
300 μ m ×  300 μ m; and 450 μ m ×  450 μ m. The sizes of these protrusions generally follow the size drawn on the 
mask used for photolithography. The exposure time during lithography influences how the image on the mask 
is translated to the size of the post, and subsequently to the microwell as a part of the fabrication process. The 
cured PDMS mold was removed from the silicon master, cut to the designed sizes (18.5 mm (width) ×  18.5 mm 
(length)), and cleaned with 70% ethanol.

Preparation of TMSPMA Coated Glass Slides. Glass slides (25 mm ×  75 mm ×  1 mm; VWR 
International) were incubated overnight in sodium hydroxide solution (Fisher). The glass slides were then thor-
oughly rinsed with distilled water and 100% alcohol 3 times and baked at 80 °C for 1 hour. After baking, the 3-(tri-
methoxysilyl)propyl methacrylate (TMSPMA; Sigma) solution was applied on the glass slides for 1 hour (30 mins 
for each surface) and the slides were baked in the oven at 80 °C for 1 hour. The slides were then rinsed with alcohol 
3 times and allowed to air dry. Finally, the glass slides were wrapped in aluminum foil, baked in the oven at 80 °C 
for 1–2 hours, and stored at room temperature until use.

Fabrication of 3-D Microwell Array Systems. Non-adhesive photo-crosslinkable polyethylene gly-
col (PEG 1000 dimethacrylate; Polysciences) solution (10% wt/wt) was prepared in phosphate-buffered saline 
(PBS; Fisher) with water-soluble photo-initiator (1% wt/wt, 2-hydroxy-1-[4-(hydroxyethoxy)phenyl]-2-methyl-
1-propanone photo-initiator, Irgacure 2959; CIBA Chemicals). The TMSPMA coated glass slides were cut to 
desired size (25 mm ×  25 mm) to be suitable to fit in the wells of a 6 well-plate for culturing, rinsed with 70% 
alcohol, and dried with nitrogen gas. The PEG solution (100 μ L) was evenly placed on the TMSPMA coated 

Figure 5. Detection of latent and lytic KSHV infection after 15 days in 3-D 450 μm microwells or 2-D 
suspension, both with (+) and without (−) puromycin selection. (a) KSHV LANA (red) was detected with 
anti-LANA monoclonal antibody. White arrowheads indicate LANA dots. The recombinant KSHV genome 
carries a cassette that constitutively expresses GFP (green). Scale bars indicating 5 μ m are shown. Panel (a) 
is digitally enlarged. (b) KSHV ORF59 (red), expressed during the lytic cycle, was detected with anti-ORF59 
monoclonal antibody. White arrowheads indicate ORF59 expressing cells. DNA was counterstained using 
Hoechst 33258 (blue). Scale bars indicating 20 μ m are shown. Magnification × 630.
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slide and the PDMS mold was gently placed on the top. The PEG solution was then exposed to ultraviolet (UV, 
Omnicure S2000; EXFO) light for cross-linking using the following settings, which were previously optimized: 
(i) wavelength: 360 nm; (ii) intensity: 6.9 mW/cm2; (iii) power: 700 mW; (iv) time: 30 s; (v) stage height: 17 mm. 
The microwell array platforms were then transferred to 6 well-plates and covered with 3 mL PBS with 1% 
penicillin-streptomycin (Gibco) and incubated overnight.

Seeding Cells into Microwell Array System. BJAB (uninfected B-cell lymphoma) cells and 
KSHV-infected BJAB cells were used in this study. KSHV-infected BJAB cells12 were a gift of Dr. Michael 
Lagunoff at the Department of Microbiology, University of Washington, Seattle, Washington. BJAB cells are 
uninfected and are a standard laboratory cell line, widely used throughout the world. BJAB cells were cul-
tured in RPMI 1640 medium supplemented with L-glutamine (Gibco), 10% fetal bovine serum (Gibco), and 
1% penicillin-streptomycin (Gibco). The KSHV-infected BJAB cells were cultured in the same media but with 
the addition of 10 μ g/mL puromycin dihydrochloride (Sigma). The uninfected (control) and infected cells were 
seeded into the microwells by adding 250 μ L of cell suspension at the concentration of 105 cells/mL on top of the 
microwell array platform. The cells were allowed to settle for 5 minutes into the microwells. The cells that did not 
sink into microwells were gently washed away with PBS. Finally, the entire microwell array system was placed into 
a well of a 6 well-plate and culture media was added to the well. The experiment was divided into three groups: 
(i) cells (control and infected cells) cultured in microwells (3-D) in the presence of puromycin selection; (ii) cells 
(control and infected cells) cultured in microwells (3-D) without puromycin selection; and (iii) cells (control and 
infected cells) cultured in T-75 tissue culture flasks (2-D) with or without puromycin selection. The media in all 
groups were changed at 3-day intervals for 15 days.

Mass swelling analysis. To perform the mass swelling experiments, a mold was created by interposing 
a ~0.5 mm preformed silicone spacer between two silicone slabs. Circles of ~12 mm diameter were previously 
created in the preformed spacer layer to host the polymerizing mixture. A PEG dimethacrylate mixture was 
injected into the mold cavity and exposed to UV light, as described before in the fabrication section. Polymerized 
hydrogels of ~0.5 mm thickness and ~12 mm diameter were obtained and removed from the mold and immedi-
ately weighed (Ww0). These hydrogels were then placed in PBS at 37 °C and weighed at regular intervals (15, 30, 
60, 120 mins, and 1 days) until the maximum mass was obtained. At a specific time point (t), hydrogels (n =  10) 
were removed from PBS, quickly dried with paper, weighed (Wwt), and placed again in PBS. The mass of the dry 
hydrogel samples (Wd) was measured after freeze-drying (0.1 mBar) for 24 hours. The mass swelling ratio at dif-
ferent times was calculated with the following formula: Wwt/Wd.

Microscopy. Brightfield or fluorescent live cell photomicrographs were taken at 3-day intervals using an 
inverted microscope (Nikon TE 2000-U; Nikon Instruments). Cells within microwells were identified on the 
photomicrographs. The surface areas of the wells covered by cells, as assessed by brightfield microscopy, were 
measured using computer software (ImageJ; National Institutes of Health) as a measure of cell proliferation. 
Fluorescent photomicrographs were used to assess maintenance of KSHV infection since the recombinant 
KSHV expresses GFP. For fluorescence microscopy of fixed cells, after 15 days in culture, cells were fixed in 
4% paraformaldehyde (Sigma Aldrich) in 1X PBS) (Gibco, Life Technologies) for 10 minutes at room temper-
ature, washed three times in PBS, spread onto slides, and dried 30 min at 37 °C. Cells were then permeabilized 
with 0.5% Triton X-100 in 1X PBS for 5 minutes at room temperature. To detect LANA, slides were incubated 
with anti-LANA monoclonal antibody (1:300; Advanced Biotechnologies), followed by secondary Alexa Fluor 
568-conjugated anti-rat antibody (1:1,000; Molecular Probes). To detect KSHV ORF59, slides were incubated 
with monoclonal antibody 11d1 (kind gift of Dr. Bala Chandran, Rosalind Franklin University of Medicine and 
Science), followed by secondary Alexa Fluor 568-conjugated anti-mouse antibody (1:1,000; Molecular Probes). 
DNA was stained using 10 μ g/ml Hoechst 33258 (Life Technologies). Coverslips were applied using Aqua-Poly 
Mount (Polysciences). Fluorescent photomicrographs were captured using a Zeiss AxioPlan 2 microscope at 
magnification of 630x.

Numerical Simulation. Numerical Simulation was performed by Comsol MultiphysicsTM (COMSOL, Inc.). 
The actual dimensions of the microwells were reconstructed in the software, and mesh elements in domain was 
built with a size ranging from 2 ×  10−6 to 2 ×  10−5 μ m. The top surface was modeled with the half region as an 
inlet and the other half region as an outlet. The velocity field on the top surface was 1 mm s−1 along x direction. 
The model was solved by Navier-Stokes equations for incompressible Newtonian fluids. The velocity field was 
plotted using color scale and streamlines, and shear stress was plotted using color scale.

Statistical Evaluation. Experiments were carried out multiple times (≥ 3) on different microwell array sys-
tems. Mean values, standard deviations, and standard errors were calculated. Data were analyzed using one-way 
and two-way analysis of variance (ANOVA) with Tukey’s and Bonferroni’s post hoc tests, respectively. Statistical 
significance threshold was set at 0.05 (p <  0.05). All statistical analyses were performed with GraphPad Prism 
(GraphPad Software). Error bars in the figures represent the standard error of the mean.

References
1. Fitzmaurice, C. et al. The global burden of cancer 2013. JAMA oncology 1, 505–527 (2015).
2. Murray, C. J. & Lopez, A. D. Measuring the global burden of disease. New England Journal of Medicine 369, 448–457 (2013).
3. Garrett, W. S. Cancer and the microbiota. Science 348, 80–86 (2015).



www.nature.com/scientificreports/

9Scientific RepoRts | 6:39144 | DOI: 10.1038/srep39144

4. LeBlanc, T. W., McNeil, M. J., Kamal, A. H., Currow, D. C. & Abernethy, A. P. Polypharmacy in patients with advanced cancer and 
the role of medication discontinuation. The Lancet Oncology 16, e333–e341 (2015).

5. Boshoff, C. & Weiss, R. AIDS-related malignancies. Nature Reviews Cancer 2, 373–382 (2002).
6. Mesri, E. A., Cesarman, E. & Boshoff, C. Kaposi's sarcoma and its associated herpesvirus. Nature Reviews Cancer 10, 707–719 

(2010).
7. Moore, P. S. & Chang, Y. Detection of herpesvirus-like DNA sequences in Kaposi's sarcoma in patients with and those without HIV 

infection. New England Journal of Medicine 332, 1181–1185 (1995).
8. Chang, Y. et al. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science 266, 1865–1869 

(1994).
9. Ballestas, M. E., Chatis, P. A. & Kaye, K. M. Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated 

nuclear antigen. Science 284, 641–644 (1999).
10. Speck, S. H. & Ganem, D. Viral latency and its regulation: lessons from the γ -herpesviruses. Cell host & microbe 8, 100–115 (2010).
11. Ballestas, M. E. & Kaye, K. M. Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen 1 mediates episome 

persistence through cis-acting terminal repeat (TR) sequence and specifically binds TR DNA. Journal of virology 75, 3250–3258 
(2001).

12. Chen, L. & Lagunoff, M. Establishment and maintenance of Kaposi's sarcoma-associated herpesvirus latency in B cells. Journal of 
virology 79, 14383–14391 (2005).

13. Dollery, S. J., Santiago-Crespo, R. J., Kardava, L., Moir, S. & Berger, E. A. Efficient infection of a human B cell line with cell-free 
Kaposi's sarcoma-associated herpesvirus. Journal of virology 88, 1748–1757 (2014).

14. Ramírez-Amador, V., Anaya-Saavedra, G. & Martínez-Mata, G. Kaposi’s sarcoma of the head and neck: a review. Oral oncology 46, 
135–145 (2010).

15. Cheng, F. et al. KSHV-initiated notch activation leads to membrane-type-1 matrix metalloproteinase-dependent lymphatic 
endothelial-to-mesenchymal transition. Cell host & microbe 10, 577–590 (2011).

16. Cheng, F., Pekkonen, P. & Ojala, P. M. Instigation of Notch signaling in the pathogenesis of Kaposi’s sarcoma-associated herpesvirus 
and other human tumor viruses. Future microbiology 7, 1191–1205 (2012).

17. Giffin, L. & Damania, B. KSHV: pathways to tumorigenesis and persistent infection. Advances in virus research 88, 111 (2014).
18. Mesri, E. A. & Cesarman, E. Kaposi’s sarcoma herpesvirus oncogenesis is a notch better in 3D. Cell host & microbe 10, 529–531 

(2011).
19. Asghar, W. et al. Engineering cancer microenvironments for in vitro 3-D tumor models. Materials Today 18, 539–553 (2015).
20. Asghar, W. et al. In Cancer Targeted Drug Delivery 635–665 (Springer, 2013).
21. Lin, R. Z. & Chang, H. Y. Recent advances in three‐dimensional multicellular spheroid culture for biomedical research. Biotechnology 

journal 3, 1172–1184 (2008).
22. Rizvi, I. et al. Flow induces epithelial-mesenchymal transition, cellular heterogeneity and biomarker modulation in 3D ovarian 

cancer nodules. Proceedings of the National Academy of Sciences 110, E1974–E1983 (2013).
23. Chen, P., Güven, S., Usta, O. B., Yarmush, M. L. & Demirci, U. Biotunable Acoustic Node Assembly of Organoids. Advanced 

healthcare materials 4, 1937–1943 (2015).
24. El Assal, R. et al. Bio‐Inspired Cryo‐Ink Preserves Red Blood Cell Phenotype and Function During Nanoliter Vitrification. Advanced 

Materials 26, 5815–5822 (2014).
25. Gurkan, U. A. et al. Engineering anisotropic biomimetic fibrocartilage microenvironment by bioprinting mesenchymal stem cells in 

nanoliter gel droplets. Molecular pharmaceutics 11, 2151–2159 (2014).
26. Moon, S. et al. Drop-on-demand single cell isolation and total RNA analysis. PLoS One 6, 17455 (2011).
27. Tasoglu, S. et al. Paramagnetic levitational assembly of hydrogels. Advanced Materials 25, 1137–1143 (2013).
28. Gurkan, U. A. et al. Simple precision creation of digitally specified, spatially heterogeneous, engineered tissue architectures. 

Advanced Materials 25, 1192–1198 (2013).
29. Tasoglu, S., Gurkan, U. A., Wang, S. & Demirci, U. Manipulating biological agents and cells in micro-scale volumes for applications 

in medicine. Chemical Society Reviews 42, 5788–5808 (2013).
30. Xu, F. et al. Embryonic stem cell bioprinting for uniform and controlled size embryoid body formation. Biomicrofluidics 5, 022207 

(2011).
31. Bernard, A. B., Lin, C.-C. & Anseth, K. S. A microwell cell culture platform for the aggregation of pancreatic β -cells. Tissue 

Engineering Part C: Methods 18, 583–592 (2012).
32. Tasoglu, S. et al. Magnetic Levitational Assembly for Living Material Fabrication. Advanced healthcare materials 4, 1469–1476 

(2015).
33. Durmus, N. G. et al. Magnetic levitation of single cells. Proceedings of the National Academy of Sciences 112, E3661–E3668 (2015).
34. Ingram, M. et al. Three-dimensional growth patterns of various human tumor cell lines in simulated microgravity of a NASA 

bioreactor. In Vitro Cellular & Developmental Biology-Animal 33, 459–466 (1997).
35. Arslan-Yildiz, A. et al. Towards artificial tissue models: past, present, and future of 3D bioprinting. Biofabrication 8, 014103 (2016).
36. Cha, J. M. et al. Embryoid body size-mediated differential endodermal and mesodermal differentiation using polyethylene glycol 

(PEG) microwell array. Macromolecular Research 23, 245–255 (2015).
37. Khetani, S. R. & Bhatia, S. N. Microscale culture of human liver cells for drug development. Nature biotechnology 26, 120–126 

(2008).
38. You, J., Shin, D. S., Patel, D., Gao, Y. & Revzin, A. Multilayered heparin hydrogel microwells for cultivation of primary hepatocytes. 

Advanced healthcare materials 3, 126–132 (2014).
39. Banerjee, S. S., Aher, N., Patil, R. & Khandare, J. Poly (ethylene glycol)-prodrug conjugates: concept, design, and applications. 

Journal of drug delivery 2012, 17 doi: 10.1155/2012/103973 (2012).
40. Sakai, Y., Yoshiura, Y. & Nakazawa, K. Embryoid body culture of mouse embryonic stem cells using microwell and micropatterned 

chips. Journal of bioscience and bioengineering 111, 85–91 (2011).
41. Yang, X., Sarvestani, S. K., Moeinzadeh, S., He, X. & Jabbari, E. Three-dimensional-engineered matrix to study cancer stem cells and 

tumorsphere formation: effect of matrix modulus. Tissue Engineering Part A 19, 669–684 (2012).
42. Hutson, C. B. et al. Synthesis and characterization of tunable poly (ethylene glycol): gelatin methacrylate composite hydrogels. Tissue 

Engineering Part A 17, 1713–1723 (2011).
43. Bertassoni, L. E. et al. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab on a 

Chip 14, 2202–2211 (2014).
44. Holman, J. In Principles of convection in Heat Transfer Hill Series in Mechanical Engineering P215–274 ((McGraw-Hill Series in 

Mechanical Engineering), 2009).
45. Kobel, S. A. & Lutolf, M. P. In Nanotechnology in Regenerative Medicine 101–112 (Springer, 2012).
46. Lin, L.-I., Chao, S.-h. & Meldrum, D. R. Practical, microfabrication-free device for single-cell isolation. PloS one 4, e6710 (2009).
47. Jones, M. C., Kobie, J. J. & DeLouise, L. A. Characterization of cell seeding and specific capture of B cells in microbubble well arrays. 

Biomedical microdevices 15, 453–463 (2013).
48. Karp, J. M. et al. Controlling size, shape and homogeneity of embryoid bodies using poly (ethylene glycol) microwells. Lab on a Chip 

7, 786–794 (2007).



www.nature.com/scientificreports/

1 0Scientific RepoRts | 6:39144 | DOI: 10.1038/srep39144

49. Hamilton, S. K. et al. Development of 3D hydrogel culture systems with on‐demand cell separation. Biotechnology journal 8, 
485–495 (2013).

50. Bogdanowicz, D. R. & Lu, H. H. Studying cell‐cell communication in co‐culture. Biotechnology journal 8, 395–396 (2013).
51. Yoshimoto, K., Ichino, M. & Nagasaki, Y. Inverted pattern formation of cell microarrays on poly (ethylene glycol)(PEG) gel patterned 

surface and construction of hepatocyte spheroids on unmodified PEG gel microdomains. Lab Chip 9, 1286–1289 (2009).
52. Lee, S. & Vörös, J. An aqueous-based surface modification of poly (dimethylsiloxane) with poly (ethylene glycol) to prevent 

biofouling. Langmuir 21, 11957–11962 (2005).
53. Wong, I. & Ho, C.-M. Surface molecular property modifications for poly (dimethylsiloxane)(PDMS) based microfluidic devices. 

Microfluidics and nanofluidics 7, 291–306 (2009).

Acknowledgements
The authors would like to acknowledge their appreciation to Rose Yoon, Sedef Dalbeyler, and Noor Abdallah 
to contribute to the initial stage of this study. We would like also to thank like Drs. Ramasamy Paulmurugan, 
Thillai Veerapazham, Murat Baday, Vigneshwaran Mani, and Lotfi Abou-Elkacem for their valuable discussion. 
We also acknowledge Quang Le and Daniel Martinenz as high school students under the Student Success Job 
Program at Brigham and Women's Hospital, Harvard Medical School. We also would like to acknowledge Bukre 
Coskun and Hasan Coskun for contributing in drawing the schematic figures. This work was supported in part 
by NSF Career 1461602, NIH R01DE02497101, NIH R21AI110277, NIH R21AI113117, NIH R01 AI093282, 
NIH R01DE024971, NIH CA082036, NIH R01 GM108584, NIH R01 AI120683, NIH R01 AI122862, NIH 
U54EB015408 and NIDCR DE025208.

Author Contributions
R.E., K.K., and U.D., developed the idea; R.E., U.A.G., K.K., and U.D designed the experimental approach; R.E., 
U.A.G., P.C., F.J., A.T., T.C., C.B., S.U., S.C., A.H., and S.S., performed the experiments; R.E., U.A.G., P.C., F.J., 
A.T., T.C., C.B., K.K., and U.D., analyzed the data; R.E., U.A.G., P.C., F.J., A.T., T.C., C.B., K.K., and U.D., wrote 
the manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: U. Demirci is a founder of, and has an equity interest in DxNow, Inc., a 
company that is developing microfluidic and imaging technologies for point-of-care diagnostic solutions, and 
Koek Biotech, a company that is developing microfluidic IVF technologies for clinical solutions. U Demirci’s 
interests were reviewed and are managed in accordance with their conflict of interest policies.
How to cite this article: El Assal, R. et al. 3-D Microwell Array System for Culturing Virus Infected Tumor 
Cells. Sci. Rep. 6, 39144; doi: 10.1038/srep39144 (2016).
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/
 
© The Author(s) 2016

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	3-D Microwell Array System for Culturing Virus Infected Tumor Cells
	Recommended Citation

	3-D Microwell Array System for Culturing Virus Infected Tumor Cells
	Introduction
	Results and Discussion
	Conclusion
	Materials and Methods
	Fabrication of PDMS Molds
	Preparation of TMSPMA Coated Glass Slides
	Fabrication of 3-D Microwell Array Systems
	Seeding Cells into Microwell Array System
	Mass swelling analysis
	Microscopy
	Numerical Simulation
	Statistical Evaluation

	Additional Information
	Acknowledgements
	References



 
    
       
          application/pdf
          
             
                3-D Microwell Array System for Culturing Virus Infected Tumor Cells
            
         
          
             
                srep ,  (2016). doi:10.1038/srep39144
            
         
          
             
                Rami El Assal
                Umut A. Gurkan
                Pu Chen
                Franceline Juillard
                Alessandro Tocchio
                Thiruppathiraja Chinnasamy
                Chantal Beauchemin
                Sebnem Unluisler
                Serli Canikyan
                Alyssa Holman
                Srikar Srivatsa
                Kenneth M. Kaye
                Utkan Demirci
            
         
          doi:10.1038/srep39144
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 The Author(s)
          10.1038/srep39144
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep39144
            
         
      
       
          
          
          
             
                doi:10.1038/srep39144
            
         
          
             
                srep ,  (2016). doi:10.1038/srep39144
            
         
          
          
      
       
       
          True
      
   


