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Figure #2: Heatmaps of average aggregate SDs across samples for different coverage sizes and step sizes. The plots 
represent data in the first bin (left), second bin (middle), and third bin (right). The circle represents the set parameters that 
was chosen to run the validation step with (coverage size of 200 and step size of 45). Note the difference in color scales.

DISCUSSION

FUTURE DIRECTIONS

33 of the initial 35 datasets passed the validation step. Then, through 
this pipeline, 6 initial viral homolog clusters were found. These 6 
homolog clusters represented 221 viral gene sequences. 

It is important to remember that the results of this correlation analysis 
will change depending on the parameters used, such as the percent 
similarity to be considered an A. vinelandii CA gene sequence and the 
similarity to be considered for an initial viral homolog cluster. Thus, 
any outputs from this pipeline should always be analyzed in the 
context of what the parameter values were. 

Additionally, this model is easily expandable to other bacterial strains, 
as the only change would be the reference genome that the gene 
counts are getting mapped to. 

• Automate downloading of data from IMG database. 
• Download more samples for greater accuracy. 
• Expand model to work with other bacterial strains.
• Explore alternative summary statistics for the aggregate SD filter.
• Identify examples of different coverage pathologies and test 

aggregate SD filter further.
• Cluster analysis of viral gene sequences. 
• Analyze viral clusters for AMGs.
• Analyze viral clusters for other genes of interest, such as large 

phage genes. 

ABSTRACT

Microbial communities play a key role in shaping many diverse ecosystems through 
their biogeochemical contributions. These communities comprise not only bacteria and 
archaea but also their viruses, whose reproduction profoundly affects host cell biology. 
While many bacterial species have been well characterized, the challenges of isolation 
and sequencing have hampered the study of environmental viruses such as 
bacteriophages. The model organism Azotobacter vinelandii is a common nitrogen-
fixing soil bacterium. To our knowledge, no Azotobacter phages currently exist in 
culture. However, modern bioinformatic and database approaches can be used to 
identify the metagenomic sequences that may derive from bacteriophages that infect 
Azotobacter. We have developed a pipeline that scans metagenomic samples from the 
IMG JGI database to identify phage sequences whose abundance co-varies with 
Azotobacter vinelandii abundance. The viral sequences identified can be grouped into 
clusters, and the resulting clusters can then be analyzed for auxiliary metabolic genes 
(AMGs). These candidate sequences may then be used to guide phage isolation 
strategies and predict phage ecological impact.

INTRODUCTION

Despite the large body of research investigating Azotobacter vinelandii’s environmental 
role and impact, one important area has been largely ignored—the interactions that this 
organism has with bacteriophages. We hypothesize that these interactions’ effects on 
Azotobacter physiology and community metabolism significantly shape the microbes’ 
role in global biogeochemical cycles.

Currently, little is known about soil viruses and how they affect microbial populations, 
through either microbial mortality rates or altered metabolic activity [4,5]. This gap is 
particularly acute for Azotobacter. But we expect viruses to be a key player in soil 
microbial ecology, based on results in other habitats, which show that large populations 
of microbes are generally infected with (largely uncharacterized) phages at any given 
time [4], and that these phages act as a form of population control and can drastically 
impact metabolic activity, such as the effects of many phages on carbon-cycling bacteria 
and the associated impact on the carbon cycle [5]. 

Similarly, bacteriophage infection of Azotobacter vinelandii could have a large effect on 
the biogeochemical nitrogen cycle and on any models of this cycle. Thus, it is important 
to characterize Azotobacter bacteriophage and their impact on host physiology. This will 
give us a better understanding of the process of nitrogen fixation in nature and the 
overall nitrogen cycle, with potential applications as wide-ranging as industrial 
production and environmental policy.
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Figure #1: Coverage maps for Azotobacter vinelandii in two different metagenomes. The map at left is consistent with the 
presence of Azotobacter in the sampled community; the map at right strongly suggests spurious annotation. Note the 
difference in y-axis scales.
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Azotobacter vinelandii, a bacterial species 
commonly found in many soils around the 
world, is a model organism to understand 
nitrogen fixation, respiration, hydrogen 
production and assimilation, and enzyme 
kinetics. Unusually, it fixes nitrogen 
aerobically, even though the enzymes that 
perform nitrogen fixation are damaged by 
molecular oxygen if left unprotected. Because it 
encodes three distinct nitrogenases, dependent 
respectively on molybdenum, vanadium, and 
iron cofactors, it is able to perform nitrogen 
fixation under a range of trace-metal 
conditions [3]. Due to these factors, it has been 
an important model system in research 
regarding the biogeochemical nitrogen cycle.

We can examine the variation in coverage across the genome by 
calculating the standard deviation (SD) of coverage in a sliding 
window of genes, then calculating the “aggregate SD”, the SD of those 
local SDs. We want to define an aggregate SD threshold that would 
allow us to automate the decision to accept or reject a metagenome’s 
apparent Azotobacter signal. Because this statistic is sensitive to the 
window size and the step size used in calculating local SDs, we 
examined variation in aggregate SD across a range of these parameters 
for a test set of 35 metagenomes with an 
apparent Azotobacter signal. We binned this test set into low (<3), 
intermediate (3–10), and high (>10) aggregate SD groups to examine 
the effects of parameter choice on aggregate SD (Figure 2). Based on 
this analysis, we chose a step size of 45 genes and a window size of 
200 genes, and we filter out metagenomes whose aggregate SD at these 
parameters is greater than 4. This filtering step reduces the test set 
from 35 to 33 metagenomes.

Use the Pearson correlation coefficient to identify phage 
homologs whose abundance covaries with Azotobacter
(Figure 3).
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Shotgun metagenomic sequencing of a microbial community 
produces a collection of sequence “reads” that can be mapped 
to regions of different microbes’ genomes. The number of 
reads that map to a genome position is called coverage and is 
expected to vary across a given genome. But some patterns of 
variation in an organism’s coverage maps may indicate that 
reads were incorrectly assigned to that genome, potentially 
inflating abundance estimates (Figure 1). Thus, we need to 
check for and filter out any metagenomes in which the 
apparent Azotobacter signal is spurious.

The parameters for the pipeline run in this trial were: 50%+ match to be considered an A. vinelandii CA strain; 30%+  match 
to be considered for an initial viral homolog cluster; window size of 200 steps and rolling increment of 45 steps; threshold of 
4 or under for a “valid” sample; threshold of r  = 0.6 + and p < .01 for correlation analysis.

r = -0.004r = -0.225
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Figure #3: Metagenomic correlation analysis for six representative phage homolog clusters. As a 
proxy for species abundance in each metagenome, we used the total number of hits to the A. 
vinelandii str. CA genome or to the viral homolog cluster. Of the 34331 phage homologs assessed, 
six were strongly correlated (r > 0.6) with Azotobacter abundance. Note the difference in y-axis 
scales.
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