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Data-Driven I–V Feature Extraction for
Photovoltaic Modules

Xuan Ma , Wei-Heng Huang , Erdmut Schnabel , Michael Köhl , Jenný Brynjarsdóttir ,
Jennifer L. Braid , Member, IEEE, and Roger H. French , Member, IEEE

Abstract—In research on photovoltaic (PV) device degradation,
current–voltage (I–V ) datasets carry a large amount of infor-
mation in addition to the maximum power point. Performance
parameters such as short-circuit current, open-circuit voltage,
shunt resistance, series resistance, and fill factor are essential for
diagnosing the performance and degradation of solar cells and
modules. To enable the scaling of I–V studies to millions of I–V
curves, we have developed a data-driven method to extract I–V
curve parameters and distributed this method as an open-source
package in R. In contrast with the traditional practice of fitting the
diode equation to I–V curves individually, which requires solving
a transcendental equation, this data-driven method can be applied
to large volumes of I–V data in a short time. Our data-driven
feature extraction technique is tested on I–V curves generated
with the single-diode model and applied to I–V curves with dif-
ferent data point densities collected from three different sources.
This method has a high repeatability for extracting I–V features,
without requiring knowledge of the device or expected parameters
to be input by the researcher. We also demonstrate how this method
can be applied to large datasets and accommodates nonstandard
I–V curves including those showing artifacts of connection prob-
lems or shading where bypass diode activation produces multiple
“steps.” These features together make the data-driven I–V feature
extraction method ideal for evaluating time-series I–V data and
analyzing power degradation mechanisms in PV modules through
cross comparisons of the extracted parameters.

Index Terms—Data driven, diode model, I–V curve, photo-
voltaic (PV) module, series resistance, shunt resistance.
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I. INTRODUCTION

CURRENT–voltage (I–V ) curve parameters are the most
commonly used measurements to evaluate the perfor-

mance and degradation of photovoltaic (PV) cells and modules.
These performance features include the maximum power point
(Pmp), short-circuit current (Isc), open-circuit voltage (Voc),
shunt resistance (Rsh), series resistance (Rs), and fill factor
(FF ). The reduction of Pmp represents power degradation of
a PV module or cell [1]. Other I–V features, meanwhile, imply
specific mechanisms of module or cell performance and degra-
dation [2]–[4]. Fitting the diode model to a single I–V curve,
based on the theory and physics of solar cell operation, is the
traditional way to obtain these I–V features.

One method of fitting the I–V curve with the diode model
is to use the Lambert W function to obtain an explicit ana-
lytical solution [5]–[9]. Iterative numerical methods are also
time-consuming and require manual setting or prior knowledge
of the approximate initial fitting parameters for each I–V curve
[10]–[14]. When analyzing a large number of I–V curves, for
example, millions of I–V curves acquired from commercial
PV power plants utilizing time-series I–V scanning tools, fit-
ting to the diode model becomes computationally and/or labor
intensive.

There have been several studies in the literature considering
time-series of I–V curves and their features [15]–[19], with
studies of only inverter-obtained data such as Isc, Voc, FF ,
and Pmp being even more common. Our group has recently
employed network structural equation modeling (netSEM) for
PV module degradation studies [1], [20], [21]. netSEM evalu-
ates datasets of stressors, mechanisms, and responses as time
series to identify and quantify relevant mathematical models
linking these variables. For outdoor studies of PV modules,
environmental exposure stressors, such as irradiance, temper-
ature, and humidity, are modeled with responses such as power
and wet insulation resistance, and mechanistic predictors of
degradation, such as I–V features, to reveal active degrada-
tion pathways. Here, we propose a data-driven I–V feature
extraction method to increase the efficiency and repeatability
of I–V time-series data stream analysis. This is based on
linear regression methods applied to different regions of the
I–V curve [14], [22]–[25]. In this paper, we scale the linear
regression approach to I–V curve fitting to accurately and effi-
ciently process millions of I–V curves from a diverse variety of
sources.
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Data-driven regression approaches, as being presented here,
intrinsically have sensitivities arising from the specific nature of
the data used and its noise [14], [26]. Yet, at the same time, the
diode model is not always adequate for describing the operation
of PV modules (involving multiple cells, bypass diodes, etc.) and
degraded PV devices [27], [28]. For example, multiple “steps”
observed in a PV module I–V curve serve as an indication of
mismatch between cells and/or irradiance present in different
areas of the PV array or module under test. This can arise from
partial shading of the PV array or degradation and damage of
PV cells in the string, thereby causing bypass diodes to activate
[29], and the resulting I–V curve does not conform to the diode
model. Therefore, many studies regard these curves as erroneous
and throw them out. Furthermore, I–V data must exhibit low
noise for accurate use of the diode model: 1% noise in an I–V
curve leads to approximately 20% of relative error in the value
of Rs extracted from the fitted diode model [8].

In this paper, we describe this data-driven I–V feature ex-
traction method and algorithm for time-series I–V studies of
PV modules. Statistical methods such as simple linear regres-
sion and smoothing spline are used [30]. A simulation study
is conducted to evaluate the performance of the I–V feature
algorithm on diode-model-generated I–V curves with various
levels of noise. Datasets from different sources, as well as a time
series of I–V curves, are used to demonstrate how the proposed
method performs on real-world data and how it can be applied
in practice.

II. EXPERIMENT AND METHOD

A. Data-Driven I–V Feature Extraction Method

The data-driven I–V feature extraction method uses linear
regressions and basic computational practices on various regions
of the I–V curve to obtain values for several I–V features
as follows. Isc is defined as the current at zero voltage (the
y-intercept of the I–V curve), while Voc is the voltage at zero
current (thex-intercept).Rsh is calculated as the negative inverse
slope of the I–V curve nearV = 0, andRs is the negative inverse
slope of the I–V curve near Voc. Pmp is the maximum product
of current and voltage on the I–V curve. FF is defined as the
ratio of the maximum power from the solar cell to the product
of Voc and Isc and measures the “squareness” of the solar cell’s
I–V curve. I–V curve parameters, as defined in this method,
are illustrated in Fig. 1.

In most PV module I–V curves, observation points are evenly
spaced in voltage. However, when approaching to Voc, the
current decreases exponentially, resulting in few points in this
pseudolinear region close toVoc, which may introduce bias when
estimating Voc and Rs. Additionally, some I–V tracers acquire
more data points near Pmp for more accurate determination of
the ideal operating point and fewer points in the pseudolinear
regions near Isc and Voc. Thus, we use a smoothing spline on
each raw I–V curve to generate an equivalent I–V curve with
500 points with equal spacing in voltage, giving enough data
points to estimate these features with low statistical uncertainty.
The smoothing spline involves interpolation and nonparametric

Fig. 1. Standard one-step I–V curve and five I–V features: Isc, Rsh, Pmp,
Voc, and Rs.

Fig. 2. Detailed procedure of the data-driven method to calculate I–V
features.

regression. Let {Vi, Ii : i = 1, 2, . . . , n} denote a set of n ob-
servations and f(v) be a function that fits the observed data. The
smoothing spline is the function f that minimizes

n∑

i=1

{Ii − f(Vi)}2 + λ

∫
{f ′′

(v)}2dv (1)

where λ is a nonnegative tuning parameter that controls
the roughness of the smoothing spline [30]. We use the
stats::smoothspline function in R to perform the spline [31].
The data-driven I–V feature extraction method applies the above
definitions of the six parameters (Isc,Rsh,Voc,Rs,Pmp, andFF )
to automatically calculate their values, as illustrated in Fig. 2.

Because not all I–V curves have a single step, as shown in
Fig. 1, we use segmented regression to find the number and
locations of change points. Segmented regression can identify
change points in a curve and is used here to figure out the
voltage where a change point occurs [32], [33]. However, not
all change points indicate the appearance of steps. The change
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Fig. 3. I–V feature extracted results of an example of I–V curve with two
steps.

Fig. 4. Change rate of the slope for regressions performed with a moving
window of five points based on a standard I–V curve.

points between steps are those with the slope on the left “steeper”
than the slope on the right, with the slope on the left being
negative. In addition, the difference between the absolute value
of slopes on the left and right sides of the point should be
sufficiently large. Thus, we denote β1 as the slope to the left
of the change point, β2 as the slope to the right of the change
point, and a as a parameter decided by the noise of the I–V curve
(for larger noise, set larger a). We build the following criterion
to identify the change points that indicate multiple steps.

1) |β1| > |β2|.
2) β1 < 0.
3) |β1| − |β2| > a.
We then extract I–V features on each step of the I–V curve.
Fig. 3 shows the I–V feature extracted result of an example

I–V curve with two steps from the Fraunhofer-ISE dataset.
In this example, we find that the voltage of the change point
between steps is 26.62 V. Based on this point, the original I–V
curve is divided into two single-step I–V curves, and we extract
I–V features for each step.

To determine Isc and Rsh, a linear regression is performed on
the 500-point splined I–V curve. The linear regression model
is shown follows:

Y = α+ β ×X + ε (2)

where X is the independent variable, Y is the dependent vari-
able, α and β are coefficients, and ε is the error term.

The regression is performed on a moving window of five
consecutive points, with current being the dependent variable
and voltage being the independent variable, and the slope for
each five-point window is stored. A five-point window (i.e., 1%
of the splined data length) is used because only a very small
number of observations approximate to a straight line; therefore,
this length is most accurate to estimate slope as well as the
change of slopes along the I–V curve.

We could expect that the slope coefficients for the low-voltage
part of the I–V curve do not change much between windows. For
the part of I–V curve that passes through the maximum power
point, the slope coefficient changes sharply, and we use the rapid
change in slope of the five-point moving box to identify some
of the I–V features such as change points between steps [27].
A typical change of the slope pattern for a standard one-step
I–V curve can be seen in Fig. 4. As shown in the figure, the
change rate of the five-point line slope remains relatively stable
from zero voltage to approaching the maximum power point,

as this corresponds to the linear part in the I–V curve near Isc.
Thus, we set a critical value for the change rate of the five-point
slope to find this linear region and determine the corresponding
consecutive current and voltage points that have a change rate
in slope smaller than this critical value. With the selected data
points from the linear region for the I–V curve near Isc, the linear
regression model in (2) is used to find the slope and intercept.
Based on our definition of Isc andRsh (see Fig. 1), Isc is estimated
with the intercept of the fitted line, and Rsh is estimated by the
negative inverse of its slope. Note that the number of selected
data points for the fit of Isc and Rsh is typically 70–75 on the
500-point splined I–V curve.

Some I–V curves, especially from outdoor systems, exhibit
a rapid change in slope approaching 0 V, which makes Rsh

and Isc determination challenging. As shown in Fig. 5(a), a
nonlinear region near Isc, due to the poor module connection
or mis-recording by the I–V curve tracing system, should be
removed in this I–V curve. Therefore, in our proposed algo-
rithm, only consecutive data points with low change of slope
are used to determine Isc and Rsh, thereby excluding curvature
the low-voltage region, as shown in Fig. 5(b). Then, using the
selected linear data points, we correct the nonlinear region, as
shown in Fig. 5(c). This method can automatically find the
appropriate current and voltage values that define the linear part
of I–V curves at low voltages.
Voc and Rs are similarly calculated from the linear part in the

I–V curve with voltage higher than that of the maximum power
point. Here, we consider a regression model with voltage as
the dependent variable and current as the independent variable.
Let the change rate of current be the difference between two
consecutive data points of currents divided by the current with
lower voltage. Thus, we set a critical value and select the data
points that have change rate of current larger than the critical
value consecutively. According to the definition of Voc and Rs,
Voc is estimated by the linear intercept, where I = 0, and Rs

is estimated by the slope. Note that the number of selected data
points for the fit ofVoc andRs is typically 50–55 on the 500-point
splined I–V curve.

Finally, Pmp is calculated by finding the maximum prod-
uct of current and voltage for each of the 500I, V data
point pairs, without fitting of the spline. FF is calculated as
follows:

FF =
Pmp

Isc × Voc
. (3)
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Fig. 5. (a) I–V curve showing curvature in the low-voltage region of the curve due to a module connection problem. (b) Change of slope has great variation in the
front, remains stable for the linear part near Isc, and then increases sharply. (c) Using the data-driven method, we are able to correct the I–V curve with curvature.

In addition, the repeatabilities are calculated for the I–V
features using a resampling method. For each iteration, we
randomly select 90% of the data points and apply the extraction
method to obtain I–V feature results. We repeat this 10 000
times to obtain 10 000 values of each extracted I–V feature. The
standard deviation (SD) of all 10 000 iterations is calculated for
each I–V feature, and the repeatability is defined as 100% −
the SD%.

The data-driven I–V feature extraction method and functions
are available as a free open-source R package, easily downloaded
from the Comprehensive R Archive Network [34].

B. I–V Measurement and Datasets

In order to validate the data-driven I–V feature extraction
method, we first use data simulated with the single-diode model
to compare the given and extracted I–V features. We then,
demonstrate the method on the following three time-series I–V
curve datasets from different sources, each with a different
number of data points (or observations) in the I–V curve.

The Fraunhofer-ISE dataset [35], [36] consists of I–V time
series from eight PV modules across three different locations,
with two modules on Mount Zugspitze (in Germany, abbreviated
as UFS, in the ET climate zone), three modules in Gran Canaria
(in Spain, abbreviated as GC, in the BWh climate zone), and
three modules in the Negev Desert (in Israel, abbreviated as
NEG, in the BSh climate zone). Climate zones are classified by
the Köppen–Geiger climate zone system [37]. BWh represents
a hot desert climate, BSh is a hot semiarid climate, and ET is
polar climate [38]–[40]. Depending on the module, we have data
for three to six years of outdoor exposure with power readings
taken every 2–3 min and I–V curve measured every 10 min.
The UFS data start from 2012, while data for GC and NEG
start from 2010. There are the total of 2.2 million I–V curves,
and each single I–V curve has 40–42 data points. These I–V
curves were acquired using an ESL Solar 500 tracer made by ET
Instrumente [41] in ambient conditions with varying irradiance
and temperature.

The second dataset of I–V curves is from the SDLE SunFarm,
a 1-acre outdoor test facility on the Case Western Reserve
University campus in Cleveland, OH, USA, where we have
122 individual PV power plants with microinverters and 32 PV
modules connected to a DayStar Multitracer for acquisition of

I–V and Pmp time series with power readings taken every 1 min
and I–V curve measured every 10 min [42]. This dataset has
I–V curves from a standard multicrystalline silicon aluminum
back-surface field (Al-BSF) module and a passivated emitter and
rear cell (PERC) monocrystalline silicon module, with name-
plate wattages of 279 and 315, respectively. The I–V curves in
this dataset have 180–200 data points and are acquired using
a DayStar Multitracer [43] in ambient conditions with varying
irradiance and temperature. In this paper, we randomly select
one I–V curve from this dataset to demonstrate our method.

The third dataset of I–V curves includes three different brands
of monosilicon Al-BSF modules, with wattages of 285, 280, and
285, undergoing an accelerated indoor sequential exposure test
consisting of 500 h of damp heat exposure, followed by 1000
cycles of dynamic mechanical loading (DH + DML sequential
test), which is done stepwise to a total exposure of 4000 h of
Damp Heat [44], [45]. In this dataset, each of the I–V curves
consists of 3600–3800 data points. These I–V curves were
acquired using a SPIRE 4600SLP flash tester [46] at standard test
conditions (STC) (1 sun and 25◦C). In this paper, we randomly
select one I–V curve from this dataset to demonstrate our
method.

III. RESULTS

In this section, we conduct a simulation study to validate the
data-driven I–V feature extraction method on I–V curves gen-
erated with the single-diode model. We then apply the method
to real-world I–V curves described above, acquired by different
I–V scanning equipment, which produce different numbers of
data points for each I–V curve.

A. I–V Curve Simulation Study

The single-diode model assumes that the dark current can be
described by a single exponential dependence modified by the
diode ideality factor n [47]. The current–voltage relationship is
given by

I = Iph − V + IRs

Rsh
− I0

[
exp

(
V + IRs

nVth

)
− 1

]
(4)

where V and I are terminal voltage in volts and current in
amperes, Iph(≈ Isc) is the photogenerated current, I0 is the diode
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TABLE I
PERCENT ERROR BETWEEN I–V FEATURE EXTRACTED RESULTS AND I–V

FEATURE SET VALUES BASED ON DIFFERENT NOISE LEVELS

The repeatabilities are listed in parentheses.

reverse saturation current, andVth is the thermal voltage. It is well
known that (4) is an implicit transcendental equation, which may
not be solved explicitly in general for I and V using common
elementary functions [48]. Therefore, one approach for exact
explicit analytical solutions for I and V can be expressed using
the Lambert W function, which is defined as the solution to the
equation W (x) exp[W (x)] = x, [6], [7] as follows:

I=
(Iph + I0)− V

Rsh

1 + Rs

Rsh

− nVth

Rs
W

[
I0Rs

nVth(1 + Rs

Rsh
)
exp

(
V + (Iph + I0)Rs

nVth(1 + Rs

Rsh
)

)]
(5)

and

V = (Iph + I0)Rsh − I(Rs +Rsh)

− nVth W

[
I0Rsh

nVth
exp

(
(Iph + I0 − I)Rsh

nVth

)]
(6)

where

I0 =
Iph

exp(Voc
N − 1)

(7)

and W represents the Lambert W function.
To illustrate the robustness of our data-driven I–V feature

extraction method, we generate an I–V curve with 1000 ob-
servations (data points) based on the single-diode model and
then use the algorithm to calculate I–V parameters including
Isc, Voc, Rsh, and Rs. Let Nc be the number of cells, which is
included in the Vth in (4), and Temp denote the temperature.
Setting Nc = 60, Temp= 25 ◦C, Voc = 40.20 V, n= 1.5, Isc =
8 A, Rsh = 600 Ω, and Rs = 0.48 Ω, an I–V curve is generated
from (5) using a sequence of 1000 points in V from 0 to Voc.
To the I values, we add random noise, which follows a normal
distribution with zero mean and different SD, listed in Table I.
Here, we generate I–V curves with noise levels between 0 and
0.02 A, which are typical noise levels for real-world I–V curves.

Table I shows the percent error and repeatability of four
extracted I–V parameters for I–V curves generated using the
diode model with the different levels of noise. We observe that
the percent errors for Isc and Voc are low, which indicates that the
data-driven I–V feature extraction method performs very well

TABLE II
AVERAGE PERCENT DIFFERENCE OF I–V FEATURE EXTRACTED RESULTS

FROM FRAUNHOFER-ISE LABORATORY REPORTED VALUES FOR OVER

2 200 000 I–V CURVES BY MODULE

in feature estimation for Isc and Voc. For Rsh, as the noise level
increases, so does the percent error, with accuracy significantly
decreasing at 0.015 A of noise on the simulated curve. For
Rs, since the extracted values are higher than the set values,
as has been demonstrated previously [26], the percent error is
more than 61%. However, all extracted values are calculated
with repeatability greater than 99.9%. Therefore, the data-driven
I–V feature extraction method is a robust, practical, and easily
implemented parameter extraction procedure for I–V curves.

B. Real-World I–V Curve Examples

1) Time-Series I–V Curves From the Fraunhofer-ISE
Outdoor Dataset: We apply the data-driven feature extraction
method to the dataset from Fraunhofer-ISE consisting of over
2 200 000 I–V curves. This dataset does not include nighttime
values and was not filtered for this analysis. Table II shows the
average percent difference of I–V feature extracted results to the
reported values for each module. Note that there is no reported
values forRsh in GC2 and NEG3. The percent difference is small
generally for Isc, Voc, Pmp, and FF , with only two modules with
large difference.

2) Single I–V Curves From Various Sources: Fig. 6 shows
examples of splined (red) and original (black) I–V curves from
three real-world datasets, each measured with unique equipment
and having a different number of datapoints and inherent noise.
The I–V features extracted from these three curves are given
along with the accompanying reported values in Table III.

The I–V curve in Fig. 6(a) was selected from the Fraunhofer-
ISE dataset, from module GC1. The temperature and irradiance
at the time of measurement were 23.6◦C and 205.3 W/m2, re-
spectively. The I–V curve in Fig. 6(b) from the SDLE SunFarm
was recorded for a 60-cell PERC module at 563.27 W/m2 irradi-
ance and 45.37 ◦C temperature. The I–V curve in Fig. 6(c) was
taken on a SPIRE 4600SLP flash tester at STC for a commercial
module that had undergone damp heat + dynamic mechanical
loading indoor accelerated testing. For the three I–V curves
shown in Fig. 6, the extracted I–V feature values from our
proposed method agree with reported values, and with greater
than 99.9% reliability in all cases.

IV. DISCUSSION

A data-driven I–V feature extraction method to extract the
solar cell I–V feature parameters has been developed. While
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Fig. 6. (a) I–V curve with 41 data points from the Fraunhofer-ISE outdoor dataset. (b) I–V curve with 186 data points from CWRU-SDLE SunFarm. (c) I–V
curve with 3694 data points from the DH + DML Indoor Accelerated Test. The corresponding 500 generated I–V curve data point smoothing splines are shown
in red.

TABLE III
I–V FEATURE EXTRACTED RESULT WITH REPEATABILITIES FOR THREE

SINGLE I–V CURVES FROM DIFFERENT SOURCES AND THE I–V TRACER

EQUIPMENT REPORTED VALUES

previous literature typically used the diode model or a combi-
nation of diode model and statistical methods to extract I–V
features, they did not consider the occurrence of multiple steps
in I–V curves [27] or the curvature that appears in I–V curves
caused by measurement inaccuracies during the I–V curve
tracer as it sweeps the voltage. Our proposed data-driven I–V
feature extraction method makes corrections for the curvature
issue and extracts the I–V features using computationally effi-
cient data-driven algorithm, which enables analysis of massive
numbers of I–V curves as are acquired as time-series datasets.

A. Accuracy and Repeatability of Extracted I–V Features

To illustrate the accuracy of our proposed data-driven I–V
feature extraction method, we conducted a simulation study
using diode-model-generated curves. The repeatabilities of all
extracted I–V features are greater than 99.9%, as shown in
Table I, which indicates that the data-driven I–V feature extrac-
tion method is robust in feature estimation. In the simulation
study, the extracted Isc, Rsh, and Voc are very accurate compared
with the values set in the single-diode model for curve genera-
tion. Note that the extracted Rsh becomes inaccurate when the
noise reaches 0.015. Meanwhile, the value of the extracted Rs

is approximately 62% higher than the set value. The percent
deviation of the extracted Rs from its true value changes with
the ideality factor of the diode model, indicating that the slope
near Voc is highly dependent on the cell recombination rates.

However, because the data-driven feature extraction method is
highly repeatable using our automated algorithm, values of Rs

produced this way are intercomparable. Care should be taken,
however, in interpreting the absolute values of the extracted
value of Rs, as this is an amalgamation of the actual Rs and
recombination influences.

B. Robustness of Parameter Extraction From Different I–V
Curve Sources

The time-series I–V data from the Fraunhofer-ISE dataset
showed good agreement between extracted and reported values
for most I–V features across 2 200 000 I–V curves. Extracted
Rsh and Rs exhibited systematic differences from reported val-
ues, as expected based on prior studies comparing linear methods
for determining these values, as discussed earlier.

Certain modules had high percent difference for other param-
eters. One reason for particular modules’ high percent differ-
ence may be due to atypically shaped I–V curves that are not
adequately handled by traditional feature extraction methods.
For example, a module with poor electrical connection with an
I–V curve, as shown in Fig. 5, would have consistently larger
reported Isc and lower reported Rsh than those obtained with
our algorithm. We suspect this is the case for modules GC3 and
UFS1. The difference in Pmp may be the result of splining, as
the reported result uses the measured data points (40–42 data
points) in I–V curves, while we use 500 data points, which are
closer to underlying I–V curves of the module.

The quality of I–V curve data has a strong influence on
extracting the I–V features. In the Fraunhofer-ISE dataset, I–V
curves have only 40–42 data points each, leading to inaccuracy
in estimating Rsh, Rs, and Pmp on the original curves. We use a
smoothing spline function to fit this data and generate 500 data
points from this curve in order to make the result more accurate
and repeatable. For the I–V curve data from the DH + DML
Indoor Accelerated Test, which has 3600–3800 data points, we
still generate 500 data points and found that the repeatability
is 99.98%. Therefore, using 500 data points is sufficient for
accurate extracted I–V features from a range of data sources.
In addition, I–V curves with different numbers of observations
make it hard to set a uniform criteria in the function (i.e., the
critical value to find the linear region) and would be problematic
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when dealing with a large number of I–V curves. By splining a
curve to 500 data points, we can use uniform criteria and, thus,
apply our algorithm more broadly. The repeatability for Isc, Voc,
Rs, Rsh, Pmp, and FF is greater than 99.9% for all curves tested
here; therefore, the technique is robust for highly varied sources
of I–V curves.

Many I–V tracer systems also report values of the I–V
features, but without disclosing the algorithms used to deter-
mine these parameters. This is the case for the Spire, DayStar
Multitracer, and the ESL systems used as the data acquisition
sources in this paper. This leads to the inherent obfuscation
of the meaning and accuracy of reported feature parameters
from these pieces of equipment. By using a common analytical
package based in open-source algorithms and codes, one is able
to analyze I–V curves from diverse instruments and arrive at
I–V feature parameters with a common basis. This is an example
of strong scientific advantages of open-source software, codes,
and algorithms [49], [50].

C. Computational Efficiency I–V Feature Extraction

For the Fraunhofer-ISE dataset, there are a total of 2.2 mil-
lion I–V curves [35], [36]. The computation of extracted I–V
features took approximately 3 h using Simple Linux Utility for
Resource Management computing resource on a single machine
with specifications: a compute node of High Performance Com-
puting server has Intel(R) Xeon(R) CPU E5-24500 @ 2.10-GHz
processor, 24-GB memory, and 12 CPU cores × 2.69 GHz.

V. CONCLUSION

In this paper, we have developed a data-driven I–V feature
extraction method to extract features from I–V curves and
calculate the repeatabilities of each I–V feature. Three different
datasets have been used to demonstrate how this method can
be applied in practice. Moreover, we have conducted a sim-
ulation study to illustrate the accuracy and reproducibility of
the extracted I–V features by generating I–V curves from the
single-diode model. Our proposed method performs very well in
I–V feature estimation for Isc,Rsh, andVoc, while the estimation
of Rs shows predictable error. All values are estimated with
very high repeatability. Therefore, the data-driven I–V feature
extraction method is an accurate, robust, and fast parameter
extraction procedure for characterizing large volumes of PV
module I–V data.
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