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Abstract
Functional graded materials (FGM) allow for reconciliation of conflicting design constraints at different locations in the
material. This optimization requires a priori knowledge of how different architectural measures are interdependent and
combine to control material performance. In this work, an aluminum FGM was used as a model system to present a new
network modeling approach that captures the relationship between design parameters and allows an easy interpretation.
The approach, in an un-biased manner, successfully captured the expected relationships and was capable of predicting the
hardness as a function of composition.

Keywords Metal design · Network models · Optimization · Functional gradient materials

Introduction

Materials design is an iterative, multi-criteria, multi-
dimensional optimization process, in which secondary
aspects, such as the availability of alloy components,
and the achievable microstructures are optimized for the
desired alloy performance. This optimization needs a priori
knowledge of 〈Processing | Microstructure | Performance〉
(〈P|M|P〉) dependencies to fully control the development of
materials. Considering the time and scale needed to develop
these dependencies, initiatives such as Materials Genome
Initiative [1] and Integrated Computational Materials
Engineering [2, 3] came into prominence in the last decade.
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This brought along the ideas about how to collect large
amount of data effectively [4] in a time-efficient manner,
infrastructure and tools needed to analyze this big data
[5, 6], and an environment that can integrate experiment,
computation, and data [7, 8].

Network models are a broad category of statistical
models for studying multi-variate relationships in complex
systems [9] and have been developed and applied in many
fields such as genomics/proteomics [10], climate modeling
[11], and materials [12]. Artificial neural networks (ANN)
(i.e., regression analysis) are most common in materials
science [13, 14], and they quickly produce models that
predict dependent variables based on independent variables.
Structural equation modeling (SEM) is a network modeling
approach used extensively in the social sciences that
captures statistically significant linear relationships among
dependent and independent variables and provides easily
interpretable insight into latent variables [15]. We have
generalized SEM beyond simple linear relationships to
allow for more complex functional forms, guided by
physics and domain-science knowledge, and refer to this
as semi-supervised (by domain knowledge), generalized
SEM for 〈P|M|P〉 modeling. The generalized SEM network
models (netSEM) serve as diagnostic/inference models that
illustrate the internal network relationships and pathways
among variables [16].
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Fig. 1 Schematic of the working
of netSEM. First, netSEM form
all possible pairs. X1, X2, .......,
Xn are variables. Then, for each
pair, netSEM checks all
functional forms and ranks them
using adj-R2. Functional forms
can be generic or may arise from
the domain knowledge. Finally,
each pair is linked with the
functional form with maximum
adj-R2

NetSEM Approach

The netSEM approach [16] starts with creating all possbile
pairs of the variables (i.e., Xi , Xj ∀i, j ∈ n, i �= j )
and then uses a step-wise regression to move through each
pair in a Markovian spirit, whereby the relationship among
two variables (i.e., y = Xj = f (Xi) ∀i, j ∈ n, i �=
j ) in the regression is unaffected by prior history, and
other variables are considered independent constants [17]
(Fig. 1). Then, pathway relationships among the variables
are evaluated with the set of permitted functional forms
as defined by domain-science predictions (Table 1). The
network model assumes that uni-variate correlations exist
in parallel and do not have combinatorial or interaction
effects. Then, the relationships between variable pairs
are rank-ordered using adj-R2 values to determine their
significance. Finally, the pair-wise system of equations
is reported and visualized as a network model for the
training dataset, and then models are validated on the testing
dataset.

In comparison with ANN, the differences lie in
the architecture of the two network models. In ANN,
architecture moves forward with all the independent
variables in the first layer and all the dependent variables
in the last layer, while all layers in between are hidden
[19]. The number of hidden layers and nodes in each layer
are user defined and there is no simple answer for how
the network progresses from one hidden layer to the next
hidden layer [20]. This makes interpretation of the physical
meaning of each hidden layer/node difficult. The resulting
ANN architecture is frozen and it is not strictly possible to
tailor the hidden layers for defining 〈P|M|P〉 relationships
from one layer to another. In comparison, a netSEM model
has no hidden layers, and instead, the approach checks
dependability among each variable pair which allows the
user to define the layers. For example, processing variables
in the first layer give rise to microstructure (tailored
hidden layer) for desired properties (last layer) in specific
environmental conditions. This increased flexibility of the
netSEM network does allow an easy interpretation of

Table 1 Generic uni-variate
functional forms evaluated by
netSEM package (v0.4.2.1)
[18]

Variable fits Functional forms

Simple linear (L) y = a + bx + ε

Quadratic (Q) y = a + bx + c ∗ x2 + ε

Simple quadratic (sQ) y = a + c ∗ x2 + ε

Exponential (Exp) y = a + d ∗ expx + ε

Logarithmic (Log) y = a + f ∗ (log(x)) + ε

Linear change point y = a + b ∗ x + b1 ∗ (x − c) + ε

Non-linear exponential (G-up, H-down) y = a + d ∗ (1 ± exp(g(x − h)) + ε
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the meaning of relationship pathways, but reduces the
predictability of the network model as compared to ANN.

Another key aspect is the use of activation functions.
ANN has a family of activation functions for training the
model which are a priori decided by the user depending
on the data. The usual practice is to use a single activation
function to train the model. Once the activation function is
selected, the ANN algorithm optimizes the weights between
nodes to train the model [21]. Even though the weights are
known, the interpretation of the physical meaning of the
nodes is difficult [20]. In comparison, netSEM allows the
user to explore multiple activation functions (as tabulated in
Table 1) for the optimization of the network. The functions
in Table 1 are tailorable by the user (Git repository listed
at the end of this paper) based on hypothesized functional
forms. This further simplifies the interpretation of the net-
work as functional forms are domain guided and arguments
are the experimentally derived variables. However, this fur-
ther reduces the accuracy of prediction of the response as
netSEM does not allow the network to self-optimize.

The comparison highlights that while network models such
as ANN primarily focus on the prediction of a response, net-
SEM provides a robust way for interpreting and attributing
physics-based meaning to the relationship pathways. Each
method is useful for different goals of materials engineering
and design. ANN provides better prediction in very complex
problems while netSEM can be used to explore potential
mechanisms by the incorporation of expected functional
forms.

Material

Functional graded materials (FGM) are a class of materials with
engineered continuous compositional gradients through the
plate thickness [22]. This work applies the netSEM approach
[16] on an aluminum FGM, produced via sequential alloy
casting using planar solidification [23, 24], to quantify
the 〈P|M|P〉 relationships. The material has a continuous
gradient in zinc (Zn) and magnesium (Mg) concentrations
through the plate thickness (ND(z) in Fig. 2). This subse-
quently produces a gradient in strengthening mechanisms
from a dominant precipitate-strengthened aluminum alloy
(AA) (Zn-based AA-7055 [25]) to a dominant strain-
hardenable aluminum alloy (Mg-based AA-5456 [25]).
Therefore, the material is simultaneously strengthened via
solid solution strengthening and precipitation strengthening.

After casting, the aluminum FGM was artificially aged to
produce the desired precipitate distribution in the AA-7055,
which causes the AA-5456 side of the FGM to undergo
an annealing treatment. Figure 2 shows that in addition
to the gradient in composition, the processing route also
produces a gradient in grain size, with the Mg-rich region
having much larger grain size than the Zn-rich side of
the FGM. The room temperature ternary phase diagram
[26] indicates that within the compositional range of the
aluminum FGM (4.6–3.5 at%Mg and 2.9–4.2 at%Zn), the
equilibrium precipitate should be Mg32Zn31.9Al17.1, with
remainder of Zn and Mg in solid solution. Precipitation
aging experimental results presented by Balderach et al.

Fig. 2 Sample schematic showing RD(x), TD(y), and ND(z) direc-
tions. Small tilted squares represent microhardness indents, and small
crosses (x) next to indents represent XEDS measurements. Gradient

in concentration is along the Z-axis. Inverse pole figure maps show a
small grain size in Zn-rich regions (a) and a large grain size in Mg-rich
regions (b)
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Table 2 Uni-variate functional
forms evaluated by netSEM.
Asterisk-marked equations
were added to the netSEM
package (v0.4.2.01) [18] based
on domain knowledge of
strengthening mechanisms

Variable fits Functional forms

Simple linear (L) y = a + bx + ε

Quadratic (Q) y = a + bx + c ∗ x2 + ε

Simple quadratic (sQ) y = a + c ∗ x2 + ε

Exponential (Exp) y = a + d ∗ expx + ε

Logarithmic (Log) y = a + f ∗ (log(x)) + ε

Linear change point y = a + b ∗ x + b1 ∗ (x − c) + ε

Non-linear exponential (G-up, H-down) y = a + d ∗ (1 ± exp(g(x − h)) + ε

Solid solution* (SS) y = a + b ∗ x
2
3 + ε

Inverse square root* (ISQR) y = a + b/
√

x + ε

[27] show the formation of metastable MgZn2(η) over
equilibrium Mg32Zn31.9Al17.1.

StrengtheningMechanism

Existing strengthening models may provide guidance for
the potential functional forms for netSEM. Solid solution
strengthening is caused by the interaction between stress
fields caused by solute atoms and moving dislocations and
has been described by Fleischer [28] and Labusch [29]. A
general equation for the increase in yield strength due to a
particular solute type can be simplified to

�σ = AG(T )ε
4
3 x

2
3 (1)

where G is the matrix shear modulus, ε is the mismatch
parameter, x is the solute mole fraction, and A is a
fitting parameter. Assuming G and ε are constant in the
aluminum FGM (because solute types are constant and in
low concentration), the governing equation simplifies to SS
in Table 2.

Similarly, precipitation hardening due to bypassing of
particles by dislocation loops have been refined based on
Orowan’s 1948 model [30]

σOr = M
0.4Gb

π(1 − ν)1/2

ln(d/b)

λ
(2)

where M is the Taylor factor, G is the matrix shear modulus,
b is the Burgers vector magnitude, ν is the Poisson’s ratio
that is assumed constant with precipitate type, and d =
d
√

2/3 and λ = d(
√

π/4f − 1) are the mean precipitate
size and interprecipitate spacing, respectively, and d is
the average precipitate diameter and f is the precipitate
volume fraction. The model indicates that the strength is
not directly related to solute concentration but is dependent
on several interrelated variables, particularly d and f , that
are indirectly related to solute concentration [31]. Without
insight into the detailed processing parameters, it is difficult
to simplify this model to the compositional variables,

since composition and processing parameters interact to
determine volume fraction, distribution, morphology, and
precipitate size.

The Hall-Petch relationship [32, 33] describes the
changes in strength due to changes in grain size, which sim-
plies to the ISQR functional form in Table 2. In conclusion,
strenghtening mechanisms provided two functional forms,
which led to the modification of netSEM package v0.4.2.01
to v0.4.7 [18].

Data Collection

Samples (19 × 19 × 4 mm) were machined from the
FGM plate such that the compositional gradient was parallel
to the 19-mm edge (ND(z) in Fig. 2). Samples were
mechanically polished through 1 μm diamond paste using
an Allied Multiprep System, culminating with a final
vibratory polish with 0.05 μm colloidal silica. A Buehler
1600-4963 indenter with 300 gf load was used to measure
Vickers hardness (HV) on polished samples as a function
of position along the compositional gradient (z-direction).
The direct measurement of localized yield strength was not
done due to the constraints imposed by sample dimensions
and the compositional gradient of the FGM. The relation
HV ∼= 3σy [34], where HV and σy have the units of
MPa, was used for the transformation. The compositional
gradient was characterized using X-ray Energy Dispersive
Spectroscopy (XEDS) in an FEI Nova NanoLab 200 at
10 KV beam energy. All parameters like working distance,
accelerating voltage, current, dwell time, and dead time
were held constant so that XEDS measurements from
different samples/locations could be compared without bias.

Data for conducting exploratory data analysis, and
model training, was collected at six different RD(x)-
locations (same composition along RD(x)) for each of the
six different ND(z)-locations (different composition along
ND(z)), which reflects the composition and hardness data
plotted in the pair-wise correlation plot in Fig. 3. For each
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Fig. 3 Pairs-wise linear
correlation plot between
composition and performance
variables for exploratory data
analysis (training dataset). X
and Z represent the sample
orthogonal coordinate system
where the compositional
gradient is along the ND(z)-axis
as indicated in Fig. 2. r and p
values in the upper triangle are
linear correlation coefficients
and probability value from
hypothesis testing, calculated
using R-package “stats” [35]
respectively

scatter plot in the lower triangle of a pair-wise correlation
plot (Fig. 3), the y-axis variable is defined by the variable
listed horizontally on the matrix main diagonal, and the
x-axis variable is defined by the variable listed vertically
on the matrix main diagonal. Similarly, the r and p values
for a linear fit between variables are presented in the
upper triangle in a mirrored fashion. Once developed on
training data, the network models were validated against an
additional test dataset. The test dataset was collected on a
different sample, at different sampling density (three ND(z)-
levels with eleven different locations at each ND(z)-level).

Comparison of the scatter plots of Mg(at%) - Z(mm),
and Zn(at%) - Z(mm), variable pairs in Fig. 3 shows that
the compositional gradients are approximately linear along
the Z-axis (|r| > 0.92). The scatter plot of Mg(at%) -
Zn(at%) show that the gradient in Mg concentration and
Zn concentration is not independent, but inversely related
(|r| > 0.93). The Cu(at%) and to a lesser extent the Al(at%)
concentration are invariant with Z(mm) position (|r| <

0.48), and therefore not significant components for uni-
variate network modeling analysis. The Hardness - Z(mm)

variable pair plot shows a continuous increase in strength
as the compositional gradient changes from Mg-rich to Zn-
rich. Visual interpretation of the scatter plots indicates that
correlations between Hardness - Mg(at%) and Hardness
- Zn(at%) show higher scatter as compared to Hardness-
Z(mm) variable pair plot. This could reflect the aggregate
sum of uncertainties of two different techniques used to
collect datasets. The grain size data was not collected under
this study.

Physics-Informed NetworkModel

The modified netSEM package (v0.4.7) uses the general
functional forms and the functional forms from strength-
ening mechanism domain knowledge in Table 2 to assess
the most significant relationship (highest adj-R2 value) for
each variable pair. The potential precipitate for the FGM
have a specific stoichiometry, which can be used for evalu-
ating the distribution of atoms. The aging experiments [27]
show MgZn2 (η) as a potential precipitate. The volume
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Fig. 4 〈P |M|P 〉 network model
of the training dataset. Units are
in at% and V HN for
compositional and hardness
variables, respectively. The best
functional form, with adj-R2

values for the different variable
pairs, is presented

fraction of η precipitates require a 2:1|Zn:Mg stoichiom-
etry and therefore the volume fraction of precipitates are
limited by the minimum of either the Zn/2 or Mg con-
centrations. For the compositional range of the FGM, this
minimum is always Zn/2; therefore, η concentration is pro-
portional to the Zn(at%) concentration. This means that no
Zn was retained in solid solution, and η and Al(Mg) (i.e.,
Mg retained in solid solution) were used as variables for
network model.

Un-biased analysis of the uni-variate correlations with
netSEM package indicates that Hardness exhibits the
highest adj-R2 between (1) an exponential relationship
with Zn and (2) a logarithmic and (3) solid solution
relationships (both have the same adj-R2) with Al(Mg)
concentration. Visualization of the data regime indicate
that functional forms (Log and SS) have similar shapes
within ranges of the variables collected. The domain
knowledge biases the selection of SS functional form for
the network model betweeen Al(Mg) and Hardness over
the selection of the Log function, as it is consistent with
the Mg concentration primarily contributing through solid-
solution hardening. The Exp function with respect to
the η concentration could be consistent with diffusional
mechanisms controlling the precipitate distribution and thus
the strengthening behavior. The simplified network model
derived from the netSEM quantification is shown in Fig. 4

and rank ordered relationships for each variable pair can
be found in the suplimental materials in the data repository
https://cwru-msl.github.io/MRL17/. The nodes in the Fig. 4
indicate that a uni-variable model of η or Al(Mg) can
account for 0.59 of the variability in the training data as
indicated by their adj-R2 values.

The predictive power of the η and Al(Mg) models
(Table 3) were validated against a test data set. This
was done by comparing measured hardness values from
a test dataset with predicted hardness values calculated
using models and measured compositional values of test
dataset. Mg and Zn concentrations are inversely dependent
by alloy design, therefore adding complexity to the model
(i.e., compare the η and Al(Mg) + η models), does not
increase model predictive power. The combination model
Table 3: Al(Mg) + η, imposes simultaneous mechanisms
(Mg: solid solution, and Zn: precipitation) as dictated by
domain knowledge but provides no statistical benefit to the
predictive power of the models as indicated by no change
in predictive-R2 or the Akaike Information Criterion (AIC)
values (which are two measures of the relative quality of
statistical models). Predictive-R2 is a variation of R2 which
adjusts R2 to determine how well the model predicts for new
observations [36]. The first two models in Table 3 can be
used for prediction, as long as Al(Mg) and η concentration
in the FGM remains inversely dependent to each other.

Table 3 Comparison of predictive models of hardness (y) with measures such as predictive-R2 and AIC values. ε is the mean-zero random error
term

Variables Functional form (y=) Predictive-R2 AIC

η 169.64 + 4.72 ∗ exp(η) + ε 0.57 416.35

Al(Mg) 235.90 − 22.10 ∗ Al(Mg)2/3 + ε 0.58 415.20

Al(Mg) + η 208.95 − 13.24 ∗ Al(Mg)2/3 + 1.96 ∗ exp(η) + ε 0.58 416.14

https://cwru-msl.github.io/MRL17/
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Discussion

Data-driven netSEM modeling provides insight into the
statistically relevant pathway relationships and uni-variate
functional forms between composition and performance, but
it is essential to consider the limitations and applicability
of the approach to design. Hardness - Mg(at%) variable
pair plot in Fig. 3 is counter to the simple expectation that
increasing solute concentration (Mg(at%)) increases hard-
ness since the Zn-Mg concentrations are not independent.
Therefore, extrapolating the network model to different sys-
tems where the Zn/Mg concentrations are independently
controlled would not be appropriate. For example, AA-5059
[25] which contains 6–6.5 at% Mg and 0.2–0.3 at% Zn
(nominally the rest Al) has an average measured hardness
value of 115.5 ± 1.4 VHN at 300 gf while the η model
and Al(Mg) model predict a hardness of 175 VHN and
164 VHN, respectively. This lack of correlation indicates
that there are additional latent variables that need to be con-
sidered for the model to be generalizable to other aluminum
alloy products.

Scatter

High variability in the hardness values as a function of
composition for the training dataset (Fig. 5) explains the
low adj-R2 value of the models (Table 3). The variability
not captured by the models could arise from two different
uncertainties: aleatoric and epistemic.

Aleatoric uncertainty is caused by visual assessment of
indent size at a particular magnification, or uncertainty
in the compositional measurements. Epistemic uncertainty
is due to hidden or latent variables (e.g., grain size). To
check aleatoric uncertainty, first, hardness measurement
uncertainty was assessed by measuring the same indent ten

Fig. 5 Models (lines) do not fit the high scatter in the Hardness
measurements as a function of compositional variables (points). Top
and bottom dotted lines represent 95% confidence interval of each
model

times, which amounted to ± 1.4 VHN, whereas scatter
in the hardness measurements (Fig. 5) is 2.4 order of
magnitude greater than this aleatoric uncertainty. Next,
aleatoric uncertainty propagated through the models due
to variation in compositional measurements was explored.
For each compositional measurement, the hardness was
predicted based on the models (Table 3). Presented in Fig. 6
is the average and standard deviation, for both measured and
predicted hardness values for each model.

The comparison (Fig. 6) provides a measure of the spread
in the model predictions based on the observed composi-
tional variation. Figure 6 confirms that the variability in
the compositional measurements is insufficient to describe
the variability in the measured hardness values. Therefore,
the additional variability in the measured hardness values
must be attributed to epistemic uncertainty (hidden or latent
variables).

Latent Variables

Grain size could be the additional variable needed to capture
the variability in hardness. As indicated in Fig. 6, the
scatter in the hardness values appears random at a particular
composition. This shows that a missing variable should
account for this variation, while composition remains
constant. From processing history (also Fig. 2), we can
infer that the grain size is dependent on the composition;
therefore, adding grain size as a variable using conventional
Hall-Petch relationship would not account for the scatter in
the data seen in Fig. 6.

Inverse pole figure in Fig. 2 shows the grain size in
the material is of the same order of magnitude as of the
size of the hardness indents, i.e., the black diamonds in the
corners of the images. Therefore, each indent effectively
samples a few crystallites instead of enough grains to get
a homogeneous measure of the properties needed to utilize

Fig. 6 Predicted hardness values and uncertainties for the η and
Al(Mg) models based on measured compositional gradient in
comparison to measured hardness values/variability for the test dataset
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Hall-Petch or Taylor factors [37]. This could introduce a
scatter to the hardness, localized strength.

The yield strength of an arbitrarily oriented single crystal
(in fcc metals) should range between 2 and 3.57 times
the critical resolved shear stress (CRSS) [38], resulting in
a 56% difference in potential strengths. The variation in
measured values can be calculated with the help of 95%
confidence interval shown in Fig. 5. For example, at 1.5 at%
of η, hardness value ranges between 183.5 and 200 VHN,
with mean at 191.75 VHN. On calculating, this amounts
to 8% variation. This “sudo-single crystal sampling” of a
textured material could describe the inherent random scatter
in the hardness values, as the 95% confidence limits on
the measured values show a variation of 8% difference in
hardness values.

Conclusions

The netSEM modeling approach was applied to assess
the strength of coupling coefficients in functional forms
to develop a diagnostic 〈P |M|P 〉 model with predictive
capabilities. This domain-guided diagnostic model (in
Table 3) was trained and validated over a limited
compositional range, showing statistical significance with
an predictive-R2 of 0.57 (η) and 0.58 (Al(Mg)). The
methodology was able to capture the SS function for
excess Mg in solid solution and an Exp function for η

concentration with the hardness of the material. These
functional forms capture the internal mechanisms and
reflect why the material behaves the way it does,
consistent with domain knowledge of alloy strengthening
mechanisms. A comparison between ANN and netSEM
was presented to allude to the values of conducting
one or both network modeling approaches depending on
user requirements. Though not explicitly shown in this
paper, the netSEM methodology is generalizable to multi-
variable problems where interpretation of the meaning of
relationship pathways is important, while also allowing the
user to tailor the tested functional forms to the system under
investigation [39].
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