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a b s t r a c t

Based on recent advances in nanoscience, data science and the availability of massive real-world data-
streams, the mesoscopic evolution of mesoscopic energy materials can now be more fully studied. The
temporal evolution is vastly complex in time and length scales and is fundamentally challenging to sci-
entific understanding of degradation mechanisms and pathways responsible for energy materials evolu-
tion over lifetime. We propose a paradigm shift towards mesoscopic evolution modeling, based on
physical and statistical models, that would integrate laboratory studies and real-world massive data-
streams into a stress/mechanism/response framework with predictive capabilities. These epidemiological
studies encompass the variability in properties that affect performance of material ensembles. Mesoscop-
ic evolution modeling is shown to encompass the heterogeneity of these materials and systems, and
enables the discrimination of the fast dynamics of their functional use and the slow and/or rare events
of their degradation. We delineate paths forward for degradation science.

� 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Energy materials are essential in our modern world and are
expected to have useful lifetimes that extend from 25 to greater
than 50 years. The need for long lifetimes and large investments
are barriers that new energy producing technologies must be sur-
mounted if they are to provide a substantial proportion of global
energy. These challenges were made evident by the Li-ion batteries
in the Boeing 787 that were predicted to short circuit only once per
10 million flight hours [1–3]. Two adverse events grounded the
whole fleet within four months of introduction, which was three
orders of magnitude greater events than estimated. We know

much about the synthesis, properties, and function of energy mate-
rials, but we do not yet know how to address the fundamental deg-
radation science of energy materials under real-world conditions
and time spans.

Since the first large testing of crystalline silicon photovoltaics
(PV) module’s reliability 40 years ago, we have seen widespread
global adoption. The first 5 MW PV power plant, developed in the
1970s as part of the DOE Block Grant Program, was predicted to
have a 20 year lifetime. The site power decreased 10� faster than
the predicted rate and the failed plant was decommissioned after
only 5 years [4]. Degradation-induced failures have been an ongo-
ing characteristic of new and promising PV cells [5,6] and other
energy materials even as producers continue to offer 25-year
warranties.

The science of degradation of energy materials over time frames
longer than >1 Gs (31.7 years) is a fundamental challenge of meso-
scale science [7,8] and a transformational opportunity for energy
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materials, for the following reasons. Realistic degradation studies
face the same data and modeling challenges as in medicine, sociol-
ogy or climate science, where ‘‘models and observational data
together form an inseparable basis for scientific understanding
and prediction’’ [9,10]. Degradation of energy materials distin-
guishes itself in that it evolves over long time-frames due to a mul-
titude of distinct, complex, and interacting mechanisms that can
lead to a variety of slow and/or rare events that eventually cause
failure. There are severe knowledge gaps in identifying, modeling,
and reliably predicting the mesoscopic evolution that produce deg-
radation, and in establishing an effective monitoring system of the
evolving process of degradation over the relevant timescales to
prevent failures (especially catastrophic failures). It is essential to
connect the mechanistic degradation pathways and their temporal
evolution at the mesoscale so as to enable the identification of
improved and longer-lived energy materials in real life. Hence,
the new degradation science examines degradation of a material or
system, guided by real-world or realistic outcomes, whose fundamen-
tals include modeling, monitoring, and prediction of a degradation
process, as well as intervention, feature selection, and optimization
aimed at improvement of materials and reduction of system failures.
A new interdisciplinary approach to degradation science calls for the
involvement of materials science, physics, chemistry, statistics, com-
puter science, engineering, and energy industries in the investigation
of real-world degradation of energy material over their lifetimes. After
reviewing current PV energy materials research approaches (Sec-
tion 2) we shall illustrate how this should be done (Section 3),
what has been done recently (Section 4), and what challenges
and new directions lie ahead (Section 5).

1.1. Advances in nanoscience and data science

There have been transformative advances which provide the
foundations for a new degradation science. First is the multitude
of advances in nanoscience from the scientific community and,
from the broader world, advances in computers, communication,
and computation.

Since the National Nanotechnology Initiative in 2000 [11], there
has been tremendous progress including detailed understanding of
science at the nanometer scale and from the femto- to attosecond
scale [12,13]. Fundamental advances in glasses [14], nanoscale
materials [15–18], interactions [19], fabrication and assembly
[20–24], and systems [25–28] have ensued. A detailed understand-
ing of the basic nanoscience that underpins the beneficial function
of energy materials provides the first building block of degradation
science.

Within nanoscience, multi-scale modeling of materials [29]
which connects microscopic/atomistic mechanisms with higher
level, coarse grained, mesoscopic and even macroscopic models
[30–34] helps us understand the fundamental origins of the phys-
ical properties of materials. This multi-scale modeling research has
focused on spanning length scales underpinning the effective
parameter passing approach, linking atomic scale behavior to
experimentally determined macroscopic properties. The Materials
Genome Initiative [35,36] is an example of accelerating materials
discovery modeling at the micro- and mesoscopic levels to guide
the experimental synthesis of new materials [37].

Still, multi-scale modeling has not elucidated the range from
femto- to gigaseconds needed to provide fundamental guidance
on the mesoscopic evolution of materials and their long term deg-
radation in function and properties. For this challenge, we start
with newly available data from large and diverse experiments.
These varied datasets provide important information to fit appro-
priate physical and statistical models and identify the fundamental
mechanisms of energy material degradation. These are then incor-
porated into a network model of their mesoscale evolution over

lifetime. As nanoscience and multi-scale modeling advance, they
will continue to provide mutual benefit by illuminating fundamen-
tals and identifying critical contributors and effects.

The tremendous advances in computation and communications
[38] and open access, code and data manipulation [39–45] over the
past ten years are a second building block for the opportunities in
degradation science. Distributed computing [46–48] improved
Internet connectivity and mobility. The ubiquity of sensors make
for unprecedented big data streams which can be utilized for
experimental studies of energy materials in the laboratory and in
real-world conditions [49]. Data science has grown beyond the
purely computational advances which have been the focus of sci-
ence (e.g., high performance computing). With increased data vol-
umes and variety and the associated advances in informatics for
petabyte scale analysis, it is now possible to study large popula-
tions of real (as opposed to idealized or simplified) energy materi-
als under real-world conditions and over very long time frames.
These epidemiological or population-based studies can comple-
ment our traditional small sample size, laboratory-based experi-
ments, providing additional statistically sound information to
bridge the 24 orders of magnitude in time required for femto- to
gigasecond science.

1.2. Temporal evolution of mesoscopic energy materials

The Materials Genome Initiative and advances in nanoscience
have allowed nascent energy materials to be developed; however,
a predictive framework for those materials properties over time in
real-world applications is lacking. For example, there is much
research on new batteries and improved storage capacity for appli-
cations in electronics, transportation, and grid [50], yet degrada-
tion science must be applied to understand the contributing
factors that limit the number of charge cycles and the basic mech-
anisms and pathways that lead to end-of-life failures [17].

Functional energy materials are complex materials with homo-
and heterogeneous interfaces and substantial variances among
samples in a population. By virtue of their energy function, they
are non-equilibrium systems with cyclic operating conditions
and stressors and thus have high spatio-temporal complexity. For
energy applications spanning the time domain from femto- to
gigaseconds, a new approach is needed that can distinguish the
large dynamics of function from the slow/rare events of degrada-
tion and their differing temporal regimes. For example, damage
initiation, accumulation, and growth will eventually lead to a tran-
sition such as a sudden precipitation or a possible bifurcation into a
new regime. Similarly, environmental conditions, as encountered
in permafrost or desert or given by daily or annual cycles of the
seasons, can produce results quantitatively different from a well
controlled laboratory-based study. To understand the degradation
significance of each of the heterogeneous aspects of materials and
devices across populations and characteristic time scales, all
respective data needs to be accessible to scientific inquiry. The
focus of this research is the development of mesoscopic-evolution
network models which integrate physical and statistical models
phenomena. These network models, exemplified in Fig. 1 for poly(-
methyl methacrylate) (PMMA) acrylic, link micro- and mesoscopic
degradation in order to understand the stressor/mechanism-mode/
responses of the PVs in real-world use over their lifetime.

2. Current PV energy materials research approaches

Three distinct communities (scientist, engineers, owners/opera-
tors) with distinct goals have worked in research and development
of energy materials. Scientists typically pursue laboratory-based
research topics related to materials performance. Engineers seek
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standards to guide product development and safety of holistic sys-
tems. Owners and operators are most concerned with real-world
performance and return on investment. These communities over-
lap and interact, but their varied approaches have hindered the
development and permeation of a cohesive scientific foundation
and culture across the energy materials community as a whole.

2.1. Laboratory-based studies

Laboratory-based studies of degradation in PV energy materials
have typically focused on a specific observed failure mode and
sought to accelerate the presentation of that mode. This methodol-
ogy has been used in potential-induced degradation [51], however,
no physical modeling of causes is provided. Novoa et al. [52] exam-
ined the bonding strength of PV module backsheets to comparable
materials in a simulated PV module in laboratory accelerated aging
conditions. Peike et al. [53] studied the effect of the system inter-
actions on the power performance of a solar cell when laminated in
various structures. Koehl et al. [54] tied the real-world climatic
data of moisture content and hydrolysis reaction rates in data-dri-
ven modeling of accelerated aging conditions. Physical models of
moisture ingress and diffusion into real materials and systems
have been employed to estimate water concentration [55]. These
studies tended to focus on distinct modes observed in the acceler-
ated aging of PV energy material expected from industry testing
standards; however, there is little correlation with real-world
observations and few insights that are extrapolated to actual use-
conditions.

2.2. Standards-based testing

Internationally-recognized standards for certifying the perfor-
mance and safety of commercially available PV products are in
existence for both technologies [56] that include measurements
[57] and accelerated exposure conditions [58]. However, several
high-profile fires and other non-conformances have been well-doc-
umented [59]. Standardized laboratory-based testing is based on
short duration, usually 3–4 months, with binary (pass/fail) out-
comes. These tests are designed to assure a uniformity of quality
at manufacture, although the tests are widely believed to provide
a rapid means of detection for known failures or degradation
modes of a product in its intended environment. This statement
is highly relevant to this discussion because the failure and degra-
dation modes must be known fully (i.e., there is no predictive

quality to these tests and yet there is an implicit linkage to the
end-use environment). An example of these test procedures for
crystalline silicon PV is IEC 61215 [56]. Due to the binary nature
of the results, problems identified by tests cannot include correc-
tive action insights and are subsequently learning limited.

2.3. Real-world studies

An epidemiological approach to data collection and analytics
has only recently been applied in real-world studies of PV systems
[60–63,5]. The published real-world studies were usually used to
monitor and model performance at coarse time scales or to deter-
mine average degradation rates over long periods. In these longitu-
dinal studies, as little as one data point per month was collected
over time and a simple linear degradation trend was fitted and
compiled for sites around the globe. Jordan and Kurtz [64] reported
real-world performance of over 2000 power plants to obtain a
mean linear model of PV module degradation rate equal to 0.5%/
year and compared these results to other studies. However, a set
of modules exposed to hot/dry conditions underwent mean degra-
dation rates of 1.5%/year [65]. These approaches are quite different
from the approaches used in the climate science community,
where statistical analysis is applied to all variables of the system
[66] and statistically significant relationships are identified [67].

3. Degradation science: mesoscopic evolution modeling

The basic science of degradation will span the time domains
from mechanisms to lifetime and will provide an integrated meso-
scopic evolution modeling methodology. This methodology
encompasses the active mechanisms and determinants of the per-
formance, safety, and function of energy materials over diverse
real-world conditions. The challenge of establishing degradation
science as the foundation of energy materials research is both
cultural and scientific. The integration of laboratory-based and
real-world studies is both a prerequisite for developing a full
mesoscopic evolution science and a necessary step for deeper
understanding of the effects of degradation. Bringing the
approaches of different cultures and communities (scientists, engi-
neers, and owners/operators of essential energy materials and
infrastructure) together will be critical to speeding up the inven-
tion, implementation, and penetration of new energy materials in
the real world beginning with data acquisition to the final realiza-
tion of reliable prediction and monitoring of degradation.

The data acquisition strategies must balance the relevant scales
and volumes of the datasets to be used in the physical and statistical
modeling. Approaches for extraction of the necessary information
must be able to disregard spurious information, so as to develop a
working network of models for each active mechanism related to
each degradation pathway on the mesoscopic physical level and
the data-driven statistical model level. To capture the temporal evo-
lution of the energy material over long time frames, appropriate
informatics methods are needed to balance data volume (e.g., sim-
ple univariate time-series data streams with high-dimensional vol-
umetric imaging datasets) while considering their respective
information contents [68,69]. The raw data and extracted informa-
tion must be accessible for query and modeling. Similarly, the mod-
eling approaches used to understand and parameterize active
mechanisms and phenomena over lifetime fall into the broad cate-
gories of micro-, meso- and macroscopic approaches. Laboratory
and real-world experimentation, informatics, analytics, and the
development of network models for mesoscopic evolution of
energy materials over lifetime together constitute the field of deg-
radation science.

Fig. 1. Network model for the stressor/mechanism-mode/response for acrylic
degradation, which shows the contributions of each stressor on a measured
response where Cti (concentration of tinuvin) and Mw (molecular weight) are latent
variables shown is circles. bij is the coupling strength. Yellow boxes are stressors.
Green boxes are mechanisms. Pink boxes are modes and blue boxes are responses.
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3.1. Integrating laboratory and real-world studies

Laboratory-based experiments seek the deterministic modeling
of mesoscale evolution by studying the effects of multiple stressors,
experimentally controlled mechanisms, expected active mecha-
nisms, and multiple responses critical to lifetime performance.
The stressors of the real world cannot be experimentally controlled,
but must be actively monitored and their cumulative effect over
time explicitly integrated, as is done in our global SunFarm Net-
work (Fig. 2). In these observational real-world studies, active deg-
radation may include unexpected yet significant mechanisms. The
systems under study typically have strong heterogeneity with large
variances that increase over time among diverse evolutionary paths
and modeled often using stochastic assumptions [70].

When planning laboratory experiments, the number and types of
repetition can be determined or estimated using results from a pilot
study or similar historical studies to reduce over- or under-sampling
and ensure sufficient statistical power [71,72]. While a prospective
real-world population-based observational study involves uncon-
trolled environmental stressors, and special attention is needed to
faithfully record potential relevant variables for follow up studies.
This is especially important in order to infer causal relationships
between stressors, mechanisms, and responses [73,74].

3.2. Stress/mechanism-mode/response framework

It is beneficial to formulate the degradation science mesoscopic
evolution models using a stress/mechanism-mode/response
framework [75] to target our full library of degradation mecha-
nisms and pathways with sufficient sampling and data acquisition
for both real-world and laboratory-based experiments. Thorough
planning of the sample populations, evaluations, and datastreams
is necessary to maximize the information yield [71,74]. Efficient
statistical planning is important to allow the study to minimize
bias and ensure reproducibility. To explore or test microscopic
mechanisms of response to a specific applied stressor or stressors,
which were either observed in a real-world study or hypothesized
based on physics theory, carefully designed laboratory-based
experiments are essential. Prospective randomized comparative
studies repeated over time under various types of stressor

conditions (that mimic the real-world environment) will be more
effective than retrospective studies in evaluating causal effects of
different stressor conditions on different material types. To eluci-
date the library of possible degradation mechanisms, not only are
materials science and physics needed, but also statistics in model-
ing degradation and identifying important features/factors that
impact degradation. The interaction of these sciences from pilot
and intermediate studies will advance the degradation science.
Ultimately the material degradation library comprises a network
of submodels, both physical and statistical, generating a system of
multivariate equations for response prediction given applied mul-
tifactor, sequential, or cyclic stressors.

3.3. Informatics and ontology for data integration

We envision an informatics and data analytics environment to
manage and support the entire data lifecycle including data assem-
bly, data reuse, query, exploratory data analysis, and data sharing.
A pilot environment called E-CRADLE™ (Energy Common Research
Analytics and Data Lifecycle Environment) is under development
for such a purpose (Fig. 3). The key architecture component of E-
CRADLE™ is a domain-specific ontology governing data acquisition
and ingestion, data annotation and curation, data assembly, and
user-interfaces for accessing data. E-CRADLE™ is designed to help
ease the data management burden for the entire community by
sharing the expertise and data resources, as well as performing
exploratory data analysis for development of physical and statistical
models. A community-wide resource such as E-CRADLE™ would
enable pilot studies from a wide range of investigators and would
support continued large-scale studies as new data becomes avail-
able. Our approach is consistent with and leads in the direction
the federal ‘‘open science’’ mandates [39,41,42].

3.4. Physical and statistical submodels

3.4.1. Physical modeling
Physical models usually assume upwards progression in the

space–time scales or in the nature of implied coarse graining.
The latter is unavoidable since a complete atomistic/quantum
description on a microscopic level is usually not realistic and

Fig. 2. Real-world data are collected from the global SunFarm network including 12 locations around the world: 1. SDLE Center SunFarm; 2. Lakeview 1 MW power plant; 3.
Tinkham Veale Student Center roof; 4. Seidman Cancer Center roof; 5. 1–2-1 fitness roof; 6. Replex SunFarm; 7. AEP Dolan Test Center; 8. Arizona Q-Lab SunFarm; 9. Florida
Q-Lab SunFarm; 10. Underwriters Laboratory (UL) Taiwan Lujhu SunFarm; 11. UL Taiwan Taitung SunFarm; and 12. Indian Institute of Technology Gandhinagar, Ahmedabad
(IITGN) SunFarm.
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mesoscopic or even macroscopic physical models are unavoidable.
The range of applicability of these models is limited by the extent
of coarse graining that is implied by the experimentally determin-
able parameters and relations, as shown below:

(a) Microscopic physical models specifically refer to atomic/
molecular aggregate mechanisms describable by quantum-electro-
dynamic Hamiltonians as functions of quantum variables solved at
a finite temperature. They have in principle no implied coarse
graining and no free parameters. Examples include quantum the-
ory of the photovoltaic effect starting from a microstructural lat-
tice-electron description of a semiconductor device or density
functional theory of optical spectra of materials [76].

(b) Mesoscopic physical models imply first level of coarse grain-
ing described with Hamiltonians that do not depend anymore on
quantum variables but on coarse grained order parameters with
assumed symmetries, coupled with phenomenological constants
that only in principle depend on microstructural parameters [77].
Examples include continuum description of various ordering phe-
nomena (liquid–solid phase transition) with Landau-type order
parameter theories [78] or the continuum description of structural
defects (dislocations and disclinations in crystals) in mesoscopic
ordering [79]. These models can seldom be reduced to some fea-
tures of the microscopic description.

(c) Macroscopic physical models depend on macroscopic vari-
ables and their connection with the micro-world of quantum vari-
ables or even the meso-world of order parameters is very tenuous.
They imply even more coarse graining, losing completely the con-
nection with micro- or mesostructural variables and are more
based on experiments and statistical data then on micro- or
mesoscopic considerations. Examples include Navier–Stokes
hydrodynamics [80], reaction–diffusion systems [81], flocking phe-
nomena in birds [82], or epidemiological models in population
dynamics [83]. These models are not even in principle reducible
to meso- or microscopic underlying descriptions.

Defects and disorder are concepts that arise naturally with
growing coarse graining of the meso- and/or macrostructural
model description [84]. While thermal disorder leading to thermal
fluctuations (or noise) and entropy variation is ever present, struc-

tural defects and disorder are usually imposed by external con-
straints or non-equilibrium driving mechanisms. Specifically, in
the context of aging and degradation mechanisms of energy mate-
rials, externally controlled or uncontrolled stressors introduce
structural defects that can either couple to the thermal fluctuations
(annealed disorder) or remain independent of the thermal fluctua-
tions (quenched disorder) [85]. Both, however, introduce degrada-
tion mechanisms that lead to a progressive disordering of the
material eventually completely destroying its functionality. Exam-
ples of the quenched disorder model include photo-oxidation yel-
lowing of the PV energy materials, where defects are chemical and
essentially immobile in nature, progressively accumulating under
stressor conditions leading to degradation irrespective of the ther-
mal fluctuations. Hazing of polymeric materials would be an exam-
ple of annealed disorder, where stressor generated microscopic
defects interact with the matrix taking advantage of the underlying
thermal fluctuations to migrate and nucleate into macroscopic dis-
order degrading the material’s functionality.

3.4.2. Statistical modeling
Statistics is the science of data. Evidence from the real world

and implications from experimental studies lie in data. Any statis-
tical analysis of data is based in the model (implicitly or explicitly)
and analysis technique (or analytics) used. The model and analytics
must be suitable and responsive to the degradation science objec-
tives. The statistical models and analytics needed for modern deg-
radation science include, but are not limited to, the following: (a)
Statistical models for the performance of microinverters and PV
modules in real-world and suitable experimental settings, when
no physical models exist for guidance. These models may be para-
metric, semi-parametric, nonparametric, longitudinal, or include
change points, depending on data and objectives. (b) Statistical fea-
ture selection techniques to find important factors that affect
power performance. (c) Statistical measures that handle large
and high-dimensional data. (d) Statistical design strategies that
structure studies for significance/information extraction, such as
those that will lead to and validate accelerated experiments in labs
for long-term reliability studies (in cooperation with materials

Fig. 3. A schematic of the E-CRADLE™ infrastructure based on distributed cloud computing, data analytics, statistics and applied math. Real-world data, laboratory-based
data, and reused data are ingested into the cloud, reassembled under the guide of domain knowledge. With the help of pathway libraries, mesoscopic evolution models of
materials are extracted from the network of physical and statistical submodels built on ingested data.
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science). (e) Statistical analysis of observational studies at different
depths and (sub) population levels from different locations under
different stressors, leading to individualized predictive models that
can be updated automatically as more data becomes available,
much like how typical weather forecasting is updated from a
month ago to a day ago. (f) Statistical process surveillance that
monitors and alerts a potential failure or problem of a degradation
system. (g) Statistical study of pilot data or interim analyses for
updated exploration and discoveries. (h) Statistical methodology
for (d), (e), and (f).

In addition to building statistically informed submodels follow-
ing above steps, a network model (or a system of structural equa-
tion models) which links both physical and statistical submodels
needs to be developed to reveal larger frameworks of degradation
systems (Section 3.5).

3.5. Mesoscopic evolution models: networks of submodels

Linking physical and statistical models into networks of models
on different spatial/temporal scales, using torrential real-time data
streams, is among the major challenges facing predictive capabili-
ties of the degradation science. In this respect there exists definite
similarities with modeling of climate processes [10] and modeling
of social evolution processes [86]. However, there is an extra layer
of challenge to materials degradation science; specifically, it would
take at least 25 years to have real-world reliability data evidence if
there was not an effective interaction of physical and statistical
models to link the real-word and laboratory studies. Even multi-
scale modeling, including recent coarse-grained simulations of bio-
physical and chemical systems [32,87,88], cannot be seen as a
guiding paradigm for material degradation because it is driven
exclusively by physical models with well defined and controlled
stressors, leading to the effective parameter passing approach to
link the microscale with macroscale properties. Thus, it is impera-
tive to have an evolution of updated data (and studies of these
data) to mimic real-world settings as closely as possible (based
on physics and statistics) in labs where an accelerated exposure
can be made. In this way, it is possible to derive more reliable pre-
dictive models of degradation (than existing models) in a much
shorter time frame (than 25 years), using a suite of real-world
and laboratory data (such as data from our partner SunFarms).

Mesoscopic generalized structural equation models, semi-
supervised by domain knowledge (semi-gSEM) [89], based on
SEM theory of statistics, epidemiology and mathematical sociol-
ogy, is a model sample that connects the physical and statistical
mechanistic submodels into a network semi-gSEM model of degra-
dation pathways that encompasses the lifetime temporal evolu-
tion. In this way we take simultaneous advantage of the SEMs
exploratory and confirmatory statistical models, elucidating statis-
tically significant relationships in complex systems with both mea-
sured and latent variables, as well as of the intermittent micro-,
meso- and macroscopic models with internal mechanistic vari-
ables, whenever they are applicable or indeed existent, capturing
relationships/couplings among all the variables available from lab-
oratory-based and real-world experiments.

Another important feature of torrential real-time data streams
(over extremely long time-scales coupled with flexible networks
of embedded submodels) is that they make it possible to detect/
analyze the impact of highly improbable events [90], that would
be missed in any laboratory-based time framework, and ways
the system can self-organize and cope/fail under externally
imposed disorder stressors. Recent advances show that there exist
materials that show an inherent antifragility [91] in their response
to degradation disorder, including solid-electrolyte interfaces [92]
and synthetic polymers [93].

4. Degradation science approach exemplified

To understand the degradation science, progress in informatics
and statistics developments are made, together with clusters of on-
going laboratory and real-world studies guided by (updated)
domain knowledge and updated evidence, especially in the meth-
odology relating stressors with a response in a material or system.

4.1. Informatics: E-CRADLE™ data lifecycle

In order to enable the studies of mesoscopic evolution using
temporal analytics, researchers in different fields need an infra-
structure encompassing the laboratory-based controlled stressors
and the real-world uncontrolled stressors for data sharing and
analysis. CRADLE™ serves as the platform of data acquisition, data
storage, data processing and data presentation, enabling physical
and statistical model development and application with a focus
on mesoscopic evolution and temporal analytics.

E-CRADLE™, based on the multi-modality, multi-resource,
information integration environment [94], is the first example of
CRADLE™ infrastructure focused on handling the PV system and
environmental monitoring data time-series data-stream from the
SunFarm network and laboratory-based PV data. All the SunFarms
are equipped with minute-by-minute PV power and environmen-
tal data monitoring instruments, with live data-streams flowing
to the SDLE center [95]. Laboratory-based data are typically spectra
and images. About 200 GB of data is generated each year. The nat-
ure of the data indicates that it is subject to typical big data prob-
lems: high volume, velocity, and variety.

Compared with the traditional way of using MySQL database to
store and retrieve data, E-CRADLE™ leverages Hadoop [96],
Hadoop distributed file system (HDFS) and HBase [97] and shows
significantly better scalability on data processing (up to 20 times
faster), data storage and data retrieval [98]. E-CRADLE™ (Fig. 3)
is based on Cloudera Express [99] as a combination of CDH and
Cloudera Manager. By leveraging Cloudera Express, E-CRADLE™
provides batch processing, interactive query, interactive search,
and interfaces with multiple programming language, such as Hive
or Pig to process data. In-place analytics on Hadoop is being imple-
mented using RHadoop [100] and other R packages to enable
researchers to manage, analyze and model degradation science
problems in place without requiring data downloading, thereby
enabling a data-centric approach of moving the analytics to the
data.

4.2. Mesoscopic evolution modeling: semi-gSEM

We developed a domain-semi-supervised generalized struc-
tural equation modeling (semi-gSEM) methodology that can be
used to relate physical mechanistic submodels and data-driven sta-
tistical submodels as networks of mechanisms/modes with statisti-
cally significant pathway relationships [89]. A component of SEM is
to have network relationships and couplings amongst variables
(stressor/mechanism-mode/response) which can be rank-ordered
as contributors for degradation. Temporal evolution, damage accu-
mulation and transitions (i.e. change points) among mechanisms
and modes and will be accounted for in these semi-gSEM models
which can be combined into a mesoscopic evolution network
model.

Our semi-gSEM is similar to the SEM [101,102] from sociology
[103], psychology [104], marketing [105], epidemiology [83], or
chemical or biological reaction network modeling [106,34] in that
there is a system of equations depicting multiple paths of different
factors (in our case, the stressors) impacting on intermediate fac-
tors (or outcomes) and then the final outcomes (in our case, the
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power performance). Our semi-gSEM was generalized to allow dif-
ferent paths to have different functional forms and include nonlin-
ear relationships; and was semi-supervised based on the current
knowledge of physics and chemistry relating to degradation mech-
anisms/modes (e.g., using plausible functional forms such as linear,
quadratic, exponential, or logarithmic, along with inclusion of
change points). Generalizing the SEM models allows for the differ-
ent stages of degradation to be effectively modeled.

For small scale networks with simple relations, the resulting
semi-gSEM model contains coupling coefficients (bij) amongst var-
iable pairs (i; j) [89]. The coupling bijdenotes the coefficient vector
of the regression model that predicts variable i and j, where the
functional form is chosen from a domain guided pool of candidates
and the final form is determined by the empirical evidence. bij can
also depend on other intermediate variables such as
Irrad ðS1Þ; Temp ðS2Þ; and RH (S3) that denote temperature, irradi-
ance level and relative humidity among the most influential factors
in degradation. The bij may also subject to an additive error or
uncertainty that is due to random error and any unobservable fac-
tors such as latent variables that characterize critically important
physical/chemical mechanisms but are not directly observed.

A large-scale network model can be conceptually divided into a
network among submodels. For example, a study of degradation of
acrylic [107] (Fig. 1) includes two submodels, Tinuvin bleaching
and chain scission, each forms a degradation mechanism. The con-
centration of the Tinuvin, denoted by Cti, reduces over time (Tinu-
vin bleaching). Cti can has significant impact to the system
performance, but is a latent variable (i.e., not directly observed).
In order to measure the change of Cti and assess its effects on the
rest of the system, the physical Tinuvin bleaching (M4) submodel
suggests that three observable variables, UV absorbance, mechani-
cal degradation, and the rate of Tinuvin bleaching capture the nec-
essary information. The mathematical constraints upon these three
variables are also given by the Tinuvin bleaching submodel. Tinu-
vin bleaching submodel provides a mathematical constraint on
above observable variables. Similarly, the chain scission (M5) sub-
model also provides suitable observable intermediate variables
and constraints. The strengths of relations among submodels are
denoted by b’s, coupling strengths, which denote vectors of cou-
pling coefficients among key variables of stressors, mechanisms/
modes, and system response. In this type of network model, we

use ~b, called coupling strength, to denote the vector of coupling
coefficients between observable variables of different submodels,
stressors and system response.

The current stage semi-gSEM methodology follows two princi-
ples. Principle 1 determines the univariate relationships between
stressor/mechanism-mode/response variables under the assumed
Markovian property that if given the value of the current variable,
then future and past variables are independent to each other, or
the current variable is sufficient to relate the next level variable.
Principle 2 simultaneously considers the stressor variables and
the mechanism/mode variables acting on the response variable col-
lectively by an additive model. The final collective additive model is
determined by a generalized stepwise variable selection [89].

4.3. Laboratory: photodegradation of acrylic

Acrylic polymer, or poly(methyl methacrylate) (PMMA), has
been aged at the SDLE Center according to the degradation science
methodology: real-world and accelerated aging studies have
yielded data that are cross correlated and a predictive model was
built in the semi-gSEM framework. Acrylic is used in PV energy
materials that reflect and concentrate light (such as back-surface
mirrors) and Fresnel lenses (such as concentrating PV systems
[108]). The material must withstand harsh outdoor conditions

including UV radiation and other stressors [75], yet unstabilized
acrylic is susceptible to photo-, thermal and chemical degradation
that manifest as changes in optical and mechanical properties
[109]. Stabilizer concentration and degradation in relation to poly-
mer degradation was the subject of a laboratory-based study to
elucidate the multivariate system degradation library. A network
of submodels, shown in Fig. 1, was developed based upon semi-
gSEM methodology to predict lifetime and optimal stabilizer con-
centrations [107].

Photodegradation studies of both unstabilized acrylic materials
and those compounded with Tinuvin UV absorber have shown rec-
iprocity in response to identical doses across a range of irradiance
levels (1�, 5�, 50�), confirming that the active degradation
mechanisms remain constant independent of irradiance intensity.
However, spectral effects are observed when contrasting full spec-
trum and UV-only irradiance sources – similar active degradation
mechanisms are observed in the UV region response (changes in
the fundamental absorption edge due to chain scission and UV
absorber bleaching), but yellowing progresses much faster in
response to the full spectral exposure due to additional photodark-
ening of the yellowing chromophores.

Data-driven semi-gSEM modeling of these study results give
insights into the interrelated mechanisms at play such as changes
in the fundamental absorption edge due to chain scission are
strongly associated with the yellowing response. In Fig. 4, a meso-
scopic evolution model including UV absorber (Tinuvin) bleaching
(TB), chain scission (CS), and mechanical degradation (Mech Deg)
is shown, which encompasses the three stages in this materials
temporal evolution to failure, over a 25-year period. Stage one
encompasses tinuvin bleaching until concentration of tinuvin (Cti)
reaches zero. A change point is seen in this grade at 12 years (Cti)
when mechanical degradation accelerates (stage 2) and is the factor
that defines the usable lifetime of this grade of acrylic. This photo-
darkening effect initially decreases tenfold with the addition of the
Tinuvin stabilizer present in multipurpose (MP) grade, with the
fundamental mechanism of photobleaching of the Tinuvin UV
absorber determining the Tinuvin consumption rate. Once the Tinu-
vin is consumed, backbone chain scission dominates the degrada-
tion (Stage 2), and this is followed by dramatic loss of mechanical
properties (modulus) in the third stage of degradation [110].

4.4. Laboratory: photodegradation and hydrolysis of polyester

Similarly to Section 4.2, bulk polymer of polyethylene-tere-
phthalate (PET) samples were exposed to real-world and acceler-
ated aging to model real material degradation under hydrolytic
and photolytic mechanisms leading to a transition and loss of
mechanical properties. PET is a critical component in photovoltaic
backsheets due to its high dielectric strength, but the material is
highly susceptible to environmental stresses. PET degradation
mainly occurs via photolytic, hydrolytic, and thermal cleavage of
an ester bond and results in discoloration and/or hazing, decreased
molecular weight, and increased crystallinity. Photodegradation
and/or photo-oxidation mainly proceeds via Norrish type I or Nor-
rish type II reactions that determine further degradation pathways
[111–114]. Hydrolysis mechanisms are more complex when chem-
ical reactions like autocatalysis due to active carboxylic acid end
groups are taken into account and various kinetic models have
been discussed in the literature [115–121]. Failures such as crack-
ing and delamination in backsheet films caused by aging [122,52]
may result in dielectric withstand breakdown of PV systems.

To study photodegradation of unstabilized PET, a laboratory-
based experiment utilizes a completely randomized longitudinal
design (i.e., unstabilized PET samples are randomly assigned four
exposure types and followed over time with repeated measure-
ments). The four different laboratory-based accelerated conditions
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are continuous and cyclical UVA light, heat and humidity in
accordance with ASTM G154 [58], and also damp heat and
humidity freeze conditions based on IEC 61215 [56] standards.
Three outcomes are measured to characterize photodegradation:
(a) yellowing under UV irradiance, (b) hydrolysis (i.e., moisture
induced hazing) and (c) embrittlement. In addition, one sample is
retained from further exposure at each time epoch for future
investigation.

Fig. 5 summarizes results as yellowing is predominant with
exposures consisting of UVA light irradiance while hazing is caused
by high level of moisture content and is more predominant when
moisture is coupled with UVA light irradiance. Nanoindentation
shows that as haze development increases, PET embrittlement
results in loss of mechanical properties and physical integrity of
the material, which reduces dielectric strength.

4.5. Laboratory: metallization corrosion of bare PV cells

The methodology of degradation science extends beyond bulk
material as was applied to accelerated aging of polycrystalline sili-
con (pc-Si) solar cells, comprising a wealth of functional interfaces
of disparate materials with a quantifiable electrical performance
rating. The cells, which are a constituent of commercial PV mod-
ules, were exposed to weathering conditions in accordance with
ASTM G154 [58]. The observed response was maximum power

reduction as evidenced by the I–V characteristics. These data were
mapped onto a macroscopic physical model of the solar cell device
using an equivalent circuit depiction containing a single diode to
represent the photoactive pn junction and parallel and series resis-
tors to represent losses [123]. This simplistic model mathematical-
ly predicts the I–V characteristics well, and allows for
parametrization of the curve for enhanced information extraction
and mesoscopic insights to performance loss [124]. In this way
the results indicated an increase in the solar cell series resistance
that suggests degradation is caused by increased losses at the
semiconductor–metal junction. Fig. 6 depicts a series of represen-
tative I–V curves for a solar cell throughout its exposure. The inset
clearly shows that for the sample ensemble the extracted series
resistance is increasing in time, which is suggestive that contact
resistance of the screen-printed silver conductor lines on the cell
are the primary cause of performance loss.

Optical analysis of the screen-printed silver conductor lines that
constitute the front contact of the cell indicated corrosion-related
oxide nanoparticle formation as evidenced by a decay in the optical
second harmonic generation signal [125]. In this way the underly-

Fig. 4. An illustrative mesoscopic evolution model of degradation pathways in stabilized PMMA acrylic spanning a 25-year lifetime, showing change points among multiple
degradation mechanisms and modes. Temporal analytics can be combined with real-world and laboratory experiments to produce the network of submodels. Stage 1 relates
to tinuvin bleaching as the largest degradation mechanism contributer. After a change point, Stage 2 is dominated by chain scisson which leads to mechanical degradation in
stage 3. TB represents tinuvin bleaching, CS represents chain scission, RH represents relative humidity, Cti represents concentration of tinuvin, Mw represents molecular
weight loss, YI represents yellowing index, and bij represents coupling strengths. Yellow boxes indicate stressors, green boxes indicate mechanisms, pink boxes indicate
modes, white circles represent latent variables, and blue boxes indicate responses.

Fig. 5. Degradation of polyethylene-terephthalate (PET): Change in Yellowness
Index and Haze (%) with exposure type.

Fig. 6. Acquired current vs voltage characteristics for sample solar cells at various
stages of aging exposure. Mapping onto the single diode model allows extraction of
a measure of the series resistance, and a plot of series resistance through time
(inset) shows an increase commensurate with power loss.
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ing physical phenomenon of series resistance increase can be
probed and understood as part of a mesoscopic model linking the
macroscopic diode model. This modeling methodology is useful
for confirmatory science and can act as a validation of or constraint
upon a semi-gSEM network modeling approach.

4.6. Laboratory: thermal and hydrolytic degradation of PV modules

An example of the semi-gSEM methodology applied to a combi-
nation of disparate PV energy materials that comprise a commer-
cial PV module were modeled to find degradation pathways
under laboratory-based accelerated aging [89]. The multivariate
interactions of mechanistic degradation is complex and best suited
for analysis consisting of a network of submodels that give predic-
tive quality. Initial results from full-sized pc-Si PV modules indi-
cated that UV stressors applied according to IEC 61215 UV
preconditioning were not sufficient to induce a significant
response in the measurable characteristics of the modules within
3000 h. Modules exposed to damp heat from IEC 61215 demon-
strated significant degradation within 1890 h, with two dominant
mechanistic degradation pathways evident involving several com-
ponent PV materials. Semi-gSEM analytics of the experimental
data, as represented schematically in Fig. 7, indicated that moisture
and thermal stressors activate PET hydrolysis (M5) in the pc-Si PV
backsheet, and ethylene–vinyl acetate (EVA) encapsulant hydroly-
sis (M4) in the interior of the module [89]. The rapid equilibration
of external environmental moisture levels at these conditions to
the interior of the module causes these two degradation pathways
to occur in parallel, and appear to be correlated. PET hydrolysis
(M5) results in a loss of mechanical, moisture barrier, and dielectric
properties in the backsheet as described in Section 4.3. EVA hydro-
lysis (M4) results in the generation of acetic acid CHAc [126] within
the interior of the pc-Si PV module and is strongly correlated to
loss of electrical properties (R8 and R9). Integrating the above
result on non-encapsulated solar cells the screen-printed silver
conductor lines are the suspected root cause of power loss, result-
ing from the additional acetic acid stressor. (See Fig. 8).

4.7. Real-world: PV module performance study

In order to cross-correlate model prediction to the real world,
the performance of a large plurality of PV modules is being
acquired for statistical modeling. In an effort to assess and quantify
effects of uncontrolled real-world stressors on module perfor-
mance, potential covariates together with performance measures
are collected in a minute-by-minute data stream on 60 pc-Si mod-

ules from 20 distinct manufacturers. The stressors and covariates
include irradiance levels, ambient temperature, physical module
locations and weather conditions such as fog level, cloudiness,
snow or rain. The Sunfarm is also continuously monitored to cap-
ture unforeseen operation conditions of the PV modules to help
capture outliers and to ensure data homogeneity for follow-up
studies. In the modeling phase, hierarchical and k-means cluster-
ing methods were used to discover naturally arising self similarity
groups and performance relationships among the data over time.
The data suggested a statistical multiple regression model for
predicting the real-world module performance in terms of logit
transformed power outputs with significant stressors. The findings
are again mapped onto physical models in a similar way to the
macroscopic diode model described above in Section 4.4. Changes
in variances and divergence in performance across a homogeneous
study population in time can be used to highlight the nature of
damage accumulation, degradation and failure. The population
members who fail first can be observed to diverge from the mean
population behavior earlier in the study, for a truly non-stochastic
degradation pathway.

4.8. Real-world: microinverter temperature prediction

Ultimately a purely data-driven statistical model can be used to
inform the laboratory based studies. A microinverter is typically
connected to one PV module to convert the DC output of the PV
module to utility AC (Fig. 9(a)). In a similar way to the PV modules,
reported data on the microinverter performance naturally allows
for extended power electronics informatics and analytics.
Fig. 9(c) shows the pairs plot and the correlation coefficient
between different environmental, application stressors, and the
system response. Furthermore, the direct impact of each stressor
on thermal performance are also evaluated. The analysis showed
that the critical factors is a mixture of application stressors: PV
module temperature, AC power output of the microinverter, and
environmental stressors: irradiance and ambient temperature
[127]. A multiple linear regression model was developed to predict
the noon time microinverter temperature at real-world operation.
Fig. 9(b) shows comparison between actual and predicted microin-
verter temperature during noon time in a typical cloudy day.

Even in this complex device, a switch-mode power converter,
the microstructural evolution of the power components results in
performance degradation at the mesoscale, but the stressors and
responses are largely unknown. Application stressors, such as high
speed grid disturbances, high frequency switching power cycling,
combined with slower events such as module power cycling and
heat/humidity give a rich set of variables that impact inverter mes-
ostructural evolution. By acquiring time-series datasets, typically
on the minute-by-minute level, one can identify factors through
which some population members diverge from the mean behavior
and become a subset of extremal or even failing devices. One seeks
out the relationships between these variables and again, mapping
the data onto physical models allows close examination of what is
essentially a closed device. For example in MOSFETs utilized in
microinverters physical models of efficiency loss indicate that
switching losses have two contributors: output capacitance loss,
Poss ¼ 1

2 CossV
2f s and conduction losses Pcl ¼ I2

DRon, regression fitting
determines the physical parameters of the device and allow for
monitoring in time to infer degradation mechanisms, such as an
Ron increase signifying thermal runaway of the FET die. Mecha-
nisms can then be confirmed by laboratory-based analytic investi-
gation. In many ways, this is easier and more productive way to
determine the critical factors on mesoscopic evolution over life-
time. Difference can arise from climatic, application stressors,
design, construction, etc.

Fig. 7. Two dominant parallel degradation pathways activated during laboratory-
based damp heat exposure of PV modules. One pathway is temperature (S2) and
humidity (S3) causing hydrolysis of the EVA (M4) encapsulant resulting in acetic
acid formation and also temperature (S2) and humidity (S3) causing hydrolysis of
the PET (M5) film in the module backsheet. These degradation pathways give rise to
both substantial power loss (R8 and R9) and failure of electrical insulation of the
backsheet (R10).
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5. Challenges and paths forward for degradation science

Degradation science as outlined in this paper poses several new
challenges, complementing traditional research approaches with
new epidemiological, analytical, modeling and visualization algo-
rithms, including harnessing diverse data provenience and formats

as well as de novo data types for research, with experiments con-
ducted under broad and uncontrolled conditions. The real-world
massive data input and processing naturally enforces sharing of
research data [128] and processing codes [44,45], as well as
promotes open data, open science, and open government policies
[41,42].

Fig. 8. The hierarchical clustering dendrogram of solar noon time Performance Ratio (PR) [57] time series of 60 pc-Si modules. Each sample is labeled as ‘‘Brands (A -
T).Location (tracker or fixed) – Sample (1–3)’’. The height of the dendrogram is computed as ‘‘1 – PCC (Pearsons Correlation Coefficient). PCC indicates the similarity of two
samples or clusters. The number of clusters is chosen through elbow-point method by K-means clustering.

Fig. 9. (a) Schematic diagram of PV module and microinverter setup. (b) Comparison of actual microinverter temperature and fitted microinverter temperature for the
microinverters connected to four different PV module brands during noon time on a typical cloudy day. (c) Pairs plot and correlation coefficient between different
environmental and application stressors. Irradiance, wind speed and ambient temperature (Ambient.T) are the environmental stressors. PV module temperature (Module.T),
PV module brand(Brand), AC power (Power) and microinverter temperature (Micro.T) are application stressors.
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5.1. The need for a shared energy materials ontology

Standard methods developed for single scale, separate, or mod-
erate-sized datasets do not scale to modern big data from multiple
sources. Six common challenges are recognized by the National
Research Councils Committee on the Analysis of Massive Data
[38]. (a) Tracking data provenance. The context in which the origi-
nal data has been collected needs to be carefully formulated, man-
aged, and shared with original data. Data about data, or metadata,
is a crucial aspect of data annotation and curation that will affect
the aggregation and sharing of data from multiple heterogeneous
sources. (b) Coping with sampling biases and heterogeneity.
Energy material data may come from (hidden) heterogeneous
groups, and contain outliers/corruptions, measurement errors,
missing values or be subject to selection biases. It is important to
develop methods to extract true signals from noisy and incomplete
data. (c) Working with different data formats and structures.
Because of the variety of energy material data originating from dif-
ferent vendors an important aspect of informatics work would be
to map and align such data to ensure that semantics is preserved
during data transmission, transformation and integration. (d) Sca-
lability of computational algorithms for processing and analyzing
energy materials data. Advances in cloud-computing have pro-
vided a promising computational paradigm for scale up computa-
tional speed. However, specific MapReduce algorithms for
specific application tasks are yet to be developed. (e) Ensuring data
integrity, data security, and enabling data integration and data
sharing. This has been incorporated in the design of CRADLE™
and will be fully developed and deployed. (f) Data visualization.
Methods for visualizing massive energy materials data need to be
further developed for on-the-fly analytics and degradation path-
way network decision-making.

To address these challenges the energy materials community
needs to develop a specific ontology that captures the scope and
depth of the energy materials domain. An energy materials ontol-
ogy (EMO) can serve as a foundation for addressing the challenges
of data provenance, data variety, and facilitate data integration and
sharing. Such an approach has been proven imperative for the bio-
logical research community as represented by the Gene Ontology
[129] for disease specific consortia such as epilepsy research com-
munity [130] or the ontological resources provided by the National
Library of Medicine encapsulated in the Unified Medical Language
System [131].

The important and direct roles a domain ontology can play for
managing big data has been demonstrated in [132], where a com-
mon ontology directly supports data capture, data integration, data
sharing, and user interfaces for data retrieval.

5.2. Big data opportunities in PV energy materials

Big data is commonly characterized by variety, volume, velocity
and veracity [133]. Progress in distinct domains may require differ-
ent strategies. It is important to resist the temptation of a mono-
lithic approach [134].

Two recent national center projects from the domain of bio-
medicine offer a blueprint for degradation science in its approach
to creating a community-level data and informatics infrastructure.
The first is the National Sleep Research Resource (NSRR [135]),
which offers free web access to large retrospective collections of
de-identified physiological signals and clinical data elements col-
lected in well-characterized research cohorts and clinical trials.
The underlying architecture is motivated from the PhysioMIMI
project, in its ontology-driven architecture governing data cura-
tion, data integration, data access and data analytics. The second
is Center for SUDEP Research (CSR [136]), which adopts MEDCIS
as its data and informatics platform, where the purpose is to pro-

spectively follow a larger group of epilepsy patients at an elevated
risk for SUDEP overtime, from multiple hospital Epilepsy Monitor-
ing Units. Again, a dedicated Epilepsy and Seizure Ontology serves
as the core knowledge source driving the entire data lifecycle. The
general ontology-guided approach to developing information sys-
tems is discussed in a larger context in [137]. In both of the exem-
plar projects, big data challenges such as processing and
annotating large collection of physiological signals and managing
patient records with thousands of uneven attribute columns
unfolded themselves from the agile development process and com-
putation need, motivated by the projects grander vision.

In addition to an ontology-driven system architecture, context-
aware, role-based access management, user-centered, interface-
driven development and agile process in partnership with domain
experts are key elements for progress. A true collaborative partner-
ship between computer scientists and domain experts, in the spirit
of team science, sets a solid organizational foundation for projects
such as NSRR and CSR.

In the context of degradation studies, we refer to ‘‘Big Data as a
frame of mind, or a bigger vision, in perceiving the science and engi-
neering landscape from a grander data scale, emboldened by the
scalability of cloud computing, such as MapReduce for massive
parallel processing’’ [138]. Such an approach can dramatically
accelerate the speed of analysis in cases of complex tasks that
are previously less computationally feasible [139]. We believe that
such a scalable approach is beneficial for degradation research in
general, even for computationally feasible problems, because it
allows us to ask bigger questions and to answer them faster, putt-
ing the computational barrier in the back of our minds so we can
focus more on the scientific content.

5.3. Analytics for hypothesis-driven and epidemiological research

A challenge to development of a holistic network of submodels
fully characterizing the time-evolution of material is the integra-
tion of models and datasets from disparate experiments and the
merging of hypothesis-driven research and epidemiological
research. Examples of laboratory based studies in a stress/mecha-
nism-mode/response framework are often initially guided by
hypothesis, as in a semi-supervised fashion, and then a data-driven
mode mesoscopic model is constructed and informed by existing
physical models. Real-world studies by contrast are more clearly
epidemiological in structure and lend themselves to predictive
modeling based purely in statistics. However, as we’ve shown,
the projection of these statistical models onto physical models
can provide fundamental insights into mechanisms of degradation
and serve to validate and verify the predictions given by labora-
tory-based studies or act as regression constraints.

Relevant statistical analytics need not only overcome the heter-
ogeneous nature of different types/evolution of data, but also the
high/huge dimensions resultants from multiple factors and mea-
surements obtained on the same module/material over time, as
well as individual patterns that can only be learned more accu-
rately as data are updated under each particular environment.
The heterogeneous real-life environment can lead to measurement
errors, irregular sampling points and censoring (as we have seen in
our SunFarm study [140]). Thus analytics that lead to effective
measures that are fast to compute, effective for prediction and
well-conditioned under this heterogeneity will be important as
they are to classification of huge volumes of astronomical light
curves [141]. These measures are also analogous to descriptors
used in image analyses. Individualized longitudinal predictive
models that can be updated over time [142] will be extremely
important for critical system monitoring. The software packages
for effective change point analyses that are applicable to degrada-
tion science and monitor system transitions are needed [143,144].
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5.4. Encompassing and discriminating temporal domains

The semi-gSEM results to date contain no explicit time depen-
dency in the mesoscopic evolution, although this time dependency
is an eventual necessity for a complete picture of material degrada-
tion. A time dependency in the modeling must discriminate the
dynamics of typical function, and be sensitive to the material mes-
oscopic evolution related to degradation. The temporal analytics
must have the sensitivity to distinguish and discover the potential
slow and rare events associated with degradation and failure.
These concepts require high density datastreams as inputs to the
model so that information entropy is not limiting to the discovery
science. The segmentation of time-scales into cycles (daily varia-
tion), steps (functional degradation response from stressors), and
stages (phase transformations) enables temporal discrimination.
Temporal discrimination among dynamics, function and the slow
or rare degradation mechanisms and modes is achieved through
data filtering, dimensional reduction or frequency banding using
spectral time-series methods [145], with the caveat that data are
always retained so that the filtering can be applied repetitively
as more data become available. This temporal segmentation is sim-
ilar conceptually to the analysis of Brownian motion by Einstein,
where the physical picture of Brownian motion is described as a
function of collective, stochastic phenomena governing the ensem-
ble of particles to the motion of a single particle on a larger order of
time, given by the square root of elapsed time [146].

The inclusion of time is a specific challenge due to the bridging
of multiple temporal orders of magnitude from the initiation and
accumulation of damage through the phase transformation leading
to cascading macroscopic performance loss on a decade time-scale.
These timescales of transformation are mechanistically dependent,
as depicted in Fig. 1, and the network of submodels must be inclu-
sive of these various time stages. Phase transformations are not
modeled by a priori physical models to an exact degree, and it is
probable that the supervised or statistical validation provided by
physical models based in hypothesis-driven science are valid
within these time stages, and they must be linked by parametric
statistical models such as regression splines. The regression splines
can effectively model these temporal change points and ensure a
continuity of the predictive model.

5.5. Making the stochastic deterministic

Integrating laboratory-based and real-world data-driven stud-
ies by necessity implies not only bridging micro-, meso-, and
macro-scopic spatio-temporal scales, but also connecting the
deterministic and stochastic approaches to modeling [147].
Stochastic reaction–diffusion systems [148] are an example of this
type of connection in systems that, while being described by deter-
ministic equations, also allow for intrinsic fluctuations that turn
out to be an important factor leading to drastic changes in the
dynamics [149]. Degradation mesocale evolution, allowing for
externally induced structural disorder of either annealed or
quenched type, would introduce an additional distinct level of cou-
pling between thermal fluctuations and external stressor gener-
ated disorder that has never been explored before.

The interplay of stochastic and deterministic evolution,
informed by semi-gSEM merging of physical and statistical models,
should help us in identifying the deterministic part of the meso-
scale evolution dynamics on one hand, but also the effects of struc-
tural disorder stemming from the externally imposed stressor
fluctuations on the other. This is of course a challenge that any
modeling of the degradation phenomena will have to face in one
way or another. To us data-driven statistical modeling coupled to
multi-level multi-scale physical models, bridging across gaps of
approximations, is the way to address this challenge.

6. Conclusion

Based on recent advances in nanoscience, data science and the
availability of massive real-world datastreams, the mesoscopic
evolution of energy materials can now be more fully studied. The
temporal evolution is vastly complex in time and length scales
and is fundamentally challenging to scientific understanding of
degradation mechanisms and pathways responsible for energy
materials evolution over lifetime. We propose a paradigm shift
towards mesoscopic evolution modeling, based on physical and
statistical models, that would integrate laboratory studies and
real-world massive datastreams into a stress/mechanism/response
framework with predictive capabilities. These epidemiological
studies encompass the variability in properties that affect perfor-
mance of material ensembles. Mesoscopic evolution modeling is
shown to encompass the heterogeneity of these materials and sys-
tems, and enables the discrimination of the fast dynamics of their
functional use and the slow and/or rare events of their degradation.
We delineate paths forward for degradation science.
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