2 CASE

WESTERN

RESERVE))

UNIVERSITY Discussions
Volume 3 | Issue 1 Article 1

Discourse in Programming- Chafe Applied to Computer Code

Steven Dee
Case Western Reserve University

Follow this and additional works at: https://commons.case.edu/discussions

Recommended Citation

Dee, Steven () "Discourse in Programming- Chafe Applied to Computer Code," Discussions: Vol. 3: Iss. 1,
Article 1.

DOI: https://doi.org/10.28953/2997-2582.1081

Available at: https://commons.case.edu/discussions/vol3/iss1/1

This Article is brought to you for free and open access by the Undergraduate Research Office at Scholarly
Commons @ Case Western Reserve University. It has been accepted for inclusion in Discussions by an authorized
editor of Scholarly Commons @ Case Western Reserve University. For more information, please contact
digitalcommons@case.edu.

https://commons.case.edu/
https://commons.case.edu/
https://commons.case.edu/discussions
https://commons.case.edu/discussions/vol3
https://commons.case.edu/discussions/vol3/iss1
https://commons.case.edu/discussions/vol3/iss1/1
https://commons.case.edu/discussions?utm_source=commons.case.edu%2Fdiscussions%2Fvol3%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.28953/2997-2582.1081
https://commons.case.edu/discussions/vol3/iss1/1?utm_source=commons.case.edu%2Fdiscussions%2Fvol3%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@case.edu

-Steven Dee-

Steven is currently in the second year
of a double major in computer sci-
ence and cognitive science here at
Case. Prior to coming here. he did
some post-secondary coursework at
the University of Akron. He’s
pledged Theta Chi and has also been
involved in CWRU Film Society, the
ACM., and the math club. Steven’s
current plans are to start up a recrea-
tional computer science and pro-
gramming club on campus.

-Acknowledgements-

I'd like to thank Todd Oakley for
his assistance in writing the paper,
as well as for encouraging me to
submit it for publication; Discus-
sions, for electing to publish it: the
cognifive science department here
for providing a platform for this
sort of research: Dr. Kathy Liszka
at Akron for first encouraging me
to branch out info alternative com-
puter languages: Dr. Jeantet for
introducing me to the field of lin-
guistics; and Dr. Ulm for
reminding me that as a computer
scientist, I must decide whether to
be a good wizard or a bad wizard.

Discourse in Programming:

Chafe Applied to Computer Code

Discourse, at its absolute broadest definition, can be seen quite
simply as the exchange of information. In its most common occur-
rence, this information is human thought exchanged between partici-
pants in conversation: however, the participants need not be con-
strained exclusively to humans. What a programmer. for instance, does
in writing code can be viewed very easily as holding discourse with a
computer. Indeed. it can be very instructive to analyze programming
from a discursive perspective: deficiencies in programming languages
can be revealed by their deviation from conversational rules, and the
nature of all discourse and cognition can be explored with an eye to
phenomena that occur in programming. An analysis with regard to the

linguistic framework Wallace Chafe presents in Discourse. Conscious-

ness. and Time can be particularly enlightening in this respect.

Chafe, a professor of linguistics at the University of California
Santa Barbara, has analyzed human speech with special attention to its
prosodic features—its flow. speed. tone. et cetera. From this analysis,
he has produced a means of reasoning about human speech production.
Using this framework, if is possible to draw conjectures about lan-
guage, and perhaps also about the nature of human thought.

In order to analyze programming languages with respect to
Chafe's framework, we first need some heuristics. Chafe analyzes lan-
guage primarily with respect to intonation units, but also with respect
to subject/verb/object constructions and identifiers. An application of
Chafe's framework to programming languages requires at least that we
find analogous constructions in these languages.

In natural language. sentences can be broken up into a subject,

a verb (or verb phrase). and an object. In programming languages, it is

~

VOLUME 3. 2007 “(

N

i

useful to chunk statements in a similar way; in Java, for
instance, the statement “subject.action
(object)” can be read as “subject performs action on
object.” In some languages, though, actions are not tied
to subjects in that manner. In C or Lua, for instance, one

frequently sees constructions such as “action

2 EE)

(subject)” or “action (subject, ocbject)
and in Smalltalk, statements are of the form “Subject
messageVerb preposition: object” In gen-
eral, this paper and the accompanying examples will use
the above constructions except when others are useful to
illustrate a point.

Intonation units are of course a phenomenon in
spoken language, which is rather far-removed from pro-
gram source code. Source is not, however, devoid of
analogous constructs. Lines of code in programming
languages exhibit many fraits of infonation units—they
typically. for instance, obey (with some notable excep-
tions) Chafe's one-new-idea constraint. This is a limited
heuristic—it does not account for the role of control
structures or for the existence of whitespace-insensitive
languages—but it is useful enough to be used through-
out this preliminary survey.

Chafe observes the presence of a one-new-idea
constraint (109) in intonation units. In programming,
there exists an adage: “do one thing” (Atwood). That is,
a function or variable should serve only one purpose.
Generally referred to simply as common wisdom, this
adage can be explained as a means of enforcing the one-
new-idea constraint. It might be that a programmer has
an easier time chunking and comprehending code that
fits with his expectations for the contents of intonation

units.

o)

In his discussion of activation cost, Chafe sepa-
rates information in conversation into the categories
given, accessible, and new (74). In Chafe's framework,
these categories correspond to speakers' and listeners'
mental states during conversation. In this analysis. there
are two components to this concept of accessibility: the
programmer's mental state, and the information accessi-
ble to the computer during compilation or execution of
the program. The programmer's perspective is rather
loosely defined: when looking at or working on certain
parts of a program. information relevant to those parts is
likely to be given or accessible to the programmer.

From the computer's perspective, on the other
hand. things are more openly defined. A non-trivial pro-
gram frequently makes use of hundreds or thousands of
variables throughout its source, and modern computers
have the ability to hold effectively all of these in main
memory. However, many of these are relevant only to
one particular part of the program: they may be accessi-
ble to the computer, but not to the programmer, and their
reference can cause confusion when reading source
code. A problem in programming language design. then,
is to provide as much correlation as possible between
knowledge that is given or accessible to the program and
knowledge that is given or accessible to the program-
mer.

At the low end of the spectrum is C, which pro-
vides only a bare minimum of scoping functionality. It is
possible to refer to global variables from anywhere in
the program code, and no means is provided of limiting
access. This makes it possible for the program to refer-
ence information that is unknown to the programmer.

Programmers have worked around the deficien-

cies in C scoping in a number of ways. One common

DISCUSSIONS

Steven Dee - Discourse in Programming: Chafe Applied to Computer Code

practice is to prefix variables relevant to only one por-
tion of the program with a particular string (usually an
underscore). so. for instance. aCounter refers to a
“private” variable that should not be used elsewhere.

Another practice, demonstrated here within the
Lua programming language. is to provide
“closures™ (Ierusalimschy §6.1). A closure is a block of
code that can contain information both local to itself and
inaccessible to the rest of the program. In this manner, a
programmer will only see references to information that
is given (previously defined within a closure) or accessi-
ble (relevant to the larger program) at any given point.
For instance. on appendix A line 2. a variable
(“count™) is defined that is local to the closure. For the
duration of code through which it is relevant (i.e.. the
closure). it can be referred to. In another closure,
though, it cannot be accessed (and attempting to do so
would raise an error).

Chafe indicates the existence of a light subject
constraint. That is, subjects in conversational language
are always either low-cost (given or accessible) or trivial
(92). This constraint is enforced to some degree in most
programming languages. but particularly well in object-
oriented languages like Smalltalk or Java.

In Smalltalk. for instance, if one wanted to work
with an instance of the Person object, one would first
have to declare an instance variable: “Jim := Per-
son new.” This can be read as “I declare Jim to be an
arbitrary new Person.” Here, Jim best fills the gram-
matical role of object rather than subject. Further. now
that Jim has been declared (i.e., is given in the source
code “conversation™). it can take on the role of subject:
one can ask questions of if (e.g., “Jim isHungry?"),

tell it to do things (e.g., “Jim eat: aBurger”), or

(to use another example), manipulate it: “3.14 trun-
cated negated”, for instance, evaluates to -3 (Sharp
6). Smalltalk thus enforces the light subject constraint.

To a certain extent, the light subject constraint is
satisfied by most programming languages in that vari-
ables must be declared (or at minimum, used in function
arguments) before they can be used in a “subject” role.
The complicating factor is. as discussed earlier, the dis-
crepancy between accessibility of information to a pro-
gram and to its programmers.

A common practice among experienced pro-
grammers is that of “playing computer.” That is, an ex-
perienced programmer will frequently take on the com-
puter's role in the “discourse™ of programming, trying to
determine the computer's internal state and actions at
each step of execution of a program. Stepping back. it is
informative to note the roles of the “participants™ in this
discourse: it is the programmer's goal to translate
thought into code. and the computer's goal to translate
code into computation and output. Yet, in performing
his role, the programmer must continuously consider the
role of the computer. In order for the discourse to suc-
ceed, the computer must interpret the programmer's code
as intended; for this to occur, the programmer must
know how the computer will interpret his code.

One particularly interesting potential area of
study is the relation that this “playing computer™ has to
what we do in discourse with other people. It is cur-
rently an open question, for instance, whether activation
cost is a reflection of delay incurred by the speaker in
accessing information or an anticipation of delay in-
curred by the listener in accepting information. I submit
that we may (albeit on a more natural. unconscious

level) undergo a similar process in conversation to that

a
VOLUME 3. 2007 \

of the programmer in computing—that is, that in our discourse with other people. we unconsciously devote some energy
to “playing human™ in anticipating our listeners' role in conversation.

Chafe's framework appears particularly well-suited to studying the art of programming. Programming languages
seem to adhere in many respects to the constraints he sets forth. and where they don't. problems and workarounds can be
seen to arise. Moreover, the techniques used by programmers in this particularly specialized form of discourse can be
instructive in the analysis of more general conversation. This preliminary analysis only scratches the surface: there are

many further avenues of study available.

NOTES

1 Javais a popular object-oriented programming language. used frequently in computer science curricula as well as in corpo
rate environments.

(]

The C programming language. dating back to the 1970s. is one of the oldest computer languages still in wide use today. It is
frequently used for low-level systems programming.

3 The Lua scripting language is commonly embedded within other programs as a means for users to extend them: it was de
signed to be easy to use, even by people unfamiliar with it.

4 Smalltalk is a “pure” object-oriented language. whose goals are to be consistent and (as the name suggests) small—in fact,
it first arose out of a challenge to fit an entire language specification on a single sheet of A4 paper.

In fact. there is a little more to C scoping than discussed here—in particular. static variables and per-file visibility can be
used to reasonable effect in situations like the one shown. The example given here. though. while contrived. is indicative of
real-world programming practice.

h

6 Alternatively, it could be stated that Jim is here new but trivial, or that this construction is in fact a violation of the light-
subject constraint. Indeed. object declaration is one possible avenue of further exploration: however, the given explanation
suffices for this survey.

RESOURCES

Atwood, Jeff. “Curly's Law: Do One Thing.” Coding Horror. 01 March 2007. 9 April 2007 <http://

www.codinghorror.com/blog/archives/000805.html=>.

Chafe, Wallace. Discourse. Consciousness. and Time. Chicago: The University of Chicago Press, 1994.

Ierusalimschy, Roberto. Programming in Lua. Lua.org, 2003. 9 April 2007 <http://www.lua.org/pil/>.

Sharp. Alec. Smalltalk by Example: The Developer's Guide. Berne: The University of Berne, 1997. 9 April 2007 <http://

www.iam.unibe.ch/~ducasse/FreeBooks/ ByExample/SmalltalkByExampleNewRelease.pdf=>.

5)
DISCUSSIONS

	Discourse in Programming- Chafe Applied to Computer Code
	Recommended Citation

	Discourse in Programming- Chafe Applied to Computer Code

