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Abstract

Objective: To determine the inflammatory analytes that predict clinical pro-

gression and evaluate their performance against biomarkers of neurodegenera-

tion. Methods: A longitudinal study of MCI-AD patients in a Discovery cohort

over 15 months, with replication in the Alzheimer’s Disease Neuroimaging Ini-

tiative (ADNI) MCI cohort over 36 months. Fifty-three inflammatory analytes

were measured in the CSF and plasma with a RBM multiplex analyte platform.

Inflammatory analytes that predict clinical progression on Clinical Dementia

Rating Scale-Sum of Boxes (CDR-SB) and Mini Mental State Exam scores were

assessed in multivariate regression models. To provide context, key analyte

results in ADNI were compared against biomarkers of neurodegeneration, hip-

pocampal volume, and CSF neurofilament light (NfL), in receiver operating

characteristic (ROC) analyses evaluating highest quartile of CDR-SB change

over two years (≥3 points). Results: Cerebrospinal fluid inflammatory analytes

in relation to cognitive decline were best described by gene ontology terms, nat-

ural killer cell chemotaxis, and endothelial cell apoptotic process and in plasma,

extracellular matrix organization, blood coagulation, and fibrin clot formation

described the analytes. CSF CCL2 was most robust in predicting rate of cogni-

tive change and analytes that correlated to CCL2 suggest IL-10 pathway dysreg-

ulation. The ROC curves for ≥3 points change in CDR-SB over 2 years when

comparing baseline hippocampal volume, CSF NfL, and CCL2 were not signifi-

cantly different. Interpretation: Baseline levels of immune cell chemotactic

cytokine CCL2 in the CSF and IL-10 pathway dysregulation impact longitudinal

cognitive and functional decline in MCI-AD. CCL2’s utility appears comparable

to biomarkers of neurodegeneration in predicting rapid decline.
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Introduction

Alzheimer’s disease (AD), which often presents early in

its course with episodic memory loss, is the most com-

mon cause of dementia. It is increasingly recognized that

there is considerable heterogeneity in AD phenotype and

clinical trajectories.1,2 Molecular factors that underpin

this heterogeneity, however, remain ill-defined. Increasing

evidence suggests that inflammatory pathways may

regulate AD progression.3–6 There has been a significant

increase in interest for evaluating inflammatory changes

in clinical AD with several studies reporting inflamma-

tion related changes in AD clinical cohorts over the last

5 years.7–10

There are also some key gaps in clarifying the role of

inflammation across multiple clinical studies. These gaps

include determining which specific peripheral and central

immunological analytes and related pathways impact rate

1226 ª 2020 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association
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of cognitive decline in human AD. There have been chal-

lenges in interpreting these results against longitudinal

rate of disease progression. Often, the directionality and

magnitude of these associations on clinical outcomes also

often differ, likely due to the use of a small number of

measured inflammatory analytes, varied methodologies,

and different stages of disease.6,11–16 In addition, it is

unclear how any of these analytes compare with other

widely used biomarkers of neurodegeneration, MRI hip-

pocampal volume, and the novel biomarker neurofilament

light (NfL) on disease progression.

To help identify inflammatory pathways or networks of

inflammatory analytes pertinent to cognitive decline in

AD, it is crucial to develop approaches that evaluate mul-

tiple analytes concomitantly and interrogate their clinical

significance when expressed together. We therefore have

taken a systematic approach to answer these gaps in mild

cognitive impairment (MCI) with AD consistent CSF

biomarkers, (MCI-AD) in whom the nature of inflamma-

tory changes were characterized by the same multiplex

panel of inflammatory analytes in the both the CSF and

plasma. After evaluation in our Discovery cohort, we vali-

dated the results among MCI patients in the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) cohort.

Using bioinformatics and classical statistical tools, we

determined (1) the key inflammatory analytes at baseline

that best predict future cognitive decline, (2) the biologi-

cal pathways most likely disrupted in relation to the

above analytes and (3) how they compare to neurodegen-

eration biomarkers, MRI hippocampal volume, and cere-

brospinal fluid (CSF) NfL. We tested the hypotheses that

(1) a proinflammatory analyte profile at baseline would

relate to a faster rate of longitudinal clinical progression

in the MCI-AD and (2) key inflammatory analytes have

at least comparable utility to neurodegeneration biomark-

ers in predicting future cognitive decline.

Materials and Methods

Discovery cohort

Forty-eight MCI-AD patients at baseline in whom the diag-

nosis of MCI-AD with CSF Ab42 and p-tau181 levels consis-

tent with a diagnosis of AD and consensus evaluation of

two neurologists and a neuropsychologist the details of

which have been published previously.17,18 The study was

approved by the Cleveland Clinic Institutional Review

Board. Eight patients did not complete the longitudinal

evaluations due to nonmedical reasons by their personal

choice. The ADmark� Alzheimer’s evaluation uses sand-

wich Enzyme Linked Immunosorbant Assay(ELISA) kits

[Innotest b-amyloid[1-42], Innotest hTAU-Ag, Innotest

Phospho-Tau[181P], Innogenetics, Ghent, Belgium]. APOE

status was determined by blood samples(10 ng per subject)

dispensed into 96-well plates for TaqMan allelic discrimi-

nation detection of single nucleotide polymorphisms that

discriminate the APOE alleles (rs429358, rs7412) (Life

Technologies). Table 1 provides data on the Discovery

cohort demographics. Inclusion, exclusion criteria are spec-

ified in Data S1. Additional clinical and environmental fac-

tors have been documented in Table S1 (Fig. 1).

Cognitive and functional measures

Mini–Mental State Examination (MMSE),19 and Clinical

Dementia Rating scale (CDR-SB)20 were conducted to

characterize the degree of their baseline cognitive and func-

tional deficit. Mini–Mental State Examination and CDR-SB

Table 1. Demographics of Discovery and ADNI cohorts.

Discovery (N = 48) ADNI ( N = 134)

P-valueN Statistics N Statistics

Age at enrollment 48 68.1 � 7.3 134 74.9 � 7.2 <0.001a1

Gender 48 134 0.23c

Male 28 (58.3) 91 (67.9)

Female 20 (41.7) 43 (32.1)

Years of education 48 16.0 [12.5, 18.0] 134 16.0 [14.0, 18.0] 0.27b

APOE e4positive 48 37 (77.1) 134 72 (53.7) 0.005c

MMSE - baseline 48 24.8 � 3.1 134 26.9 � 1.8 <0.001a2

CDR-SB - baseline 48 2.1 � 1.2 134 1.5 � 0.89 0.002a2

CSF AB42, pg/mL 48 305.9 [216.1, 367.1] 134 144.5 [129.0, 171.0]

CSF t-tau, pg/mL 48 454.3 [335.2, 771.3] 134 90.6 [67.8, 134.0]

CSF p-tau, pg/mL 48 79.6 [59.3, 104.6] 134 35.7 [23.0, 45.8]

Statistics presented as Mean � SD, Median [P25, P75], N (column%).

P-values: a1 = t-test, a2 = Satterthwaite t-test, b = Wilcoxon Rank Sum test, c = Pearson’s chi-square test, d = Fisher’s Exact test.

P-value < 0.05 is noted in bold.

CDR-SB, Clinical dementia rating scale-sum of boxes; MMSE, Mini mental state exam.

ª 2020 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association 1227
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scores were also evaluated longitudinally to evaluate cogni-

tive change at 9 and 15 months from baseline evaluations.

Inflammatory biomarkers

The biomarker analysis protocol used in this study has been

previously described (18). In brief, CSF and plasma were col-

lected and analyzed by an independent laboratory via the val-

idated RBM Multi-Analyte Profile (MAP) platform from

Myriad Genetics (Salt Lake City, UT). Samples were evalu-

ated for levels of 86 analytes using a custom MAP:

HumanMAP�v2.0 + IL1 and 16 using a Luminex platform.

Validation has been performed as defined by the Clinical and

Laboratory Standards Institute and is therefore replicable

across multiple runs. Cerebrospinal fluid and plasma samples

were collected contemporaneously. Only those analytes with

at least 50% response rate above the limit of detection in the

Discovery cohort were included for further analysis.

ADNI validation cohort

Alzheimer’s Disease Neuroimaging Initiative is a longitu-

dinal multicenter study designed to develop clinical,

imaging, genetic, and biochemical biomarkers for the

early detection and tracking of AD. Alzheimer’s Disease

Neuroimaging Initiative was launched by the National

Institute of Aging and is a multicenter project with addi-

tional support from private pharmaceutical companies,

and nonprofit organizations. ADNI 1 eligibility criteria

are described in the ADNI 1 protocol http://adni.loni.

usc.edu/methods/documents/.

The demographics at baseline among the subset of all

134 ADNI MCI participants who had CSF and plasma mul-

tiplex data were used in the validation analysis are shown

in Table 1. Longitudinal cognitive evaluations in the ADNI

cohort documented at 12, 24, and 36 months were

included in the analysis. AD CSF biomarker data were

downloaded from http://adni.loni.usc.edu/ in which the

CSF Ab1-42, t-tau, and p-tau181 concentration data were

generated using the Research Use Only (RUO) INNOBIA

AlzBio3 immunoassay (Fujirebio, Belgium). Median values

for each subject were used in the analysis. Amyloid-positiv-

ity based on a published, autopsy-confirmed cutoff value

(<192 pg/mL) were used in a subgroup analysis to define

MCI-AD21,22 of which there were 106 participants (see Data

S1). Cerebrospinal fluid samples were measured for levels

of 159 analytes using the RBM DiscoveryMAP� v.1.0 panel.

The RBM HumanMAP� v.2.0 used in the Discovery cohort

is a subset of the RBM DiscoveryMAP� v.1.0 and uses a

Luminex platform with the same quality control and

thresholding process used in ADNI dataset and are compa-

rable. CSF NFL was measured using a sandwich ELISA

method and provided as pg/ml (NF-light ELISA kit,

UmanDiagnostics AB, Ume�a, Sweden), as described previ-

ously. The lower limit of quantification for this assay was

50 ng/L.23 Subject data quality was checked.

Bioinformatics and statistical analysis

Ontology analysis and network analysis to
identify inflammatory analytes

Our final comprehensive list of 53 candidate inflammatory

analytes (from 86 analytes in RBM MAP platform in the Dis-

covery cohort) is provided in Table 2 and has been previously

described18 and rationale describing selection is in Data S1.

Subgroup searching for analyte synergistic
relationships

Univariate analyses often fail in validation as they are

trained on the specific patient dataset of the discovery

Figure 1. Methodological overview.

1228 ª 2020 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association
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project, and average the heterogeneities present, while the

validation cohort may have differences in the levels of

individual analytes from multiple environmental factors.

Network biology methods, specifically network based bio-

marker models, can effectively integrate heterogeneities at

the patient level and provide robust validation across

cohorts. In order to evaluate analyte levels that show

higher correlation when considered together (synergistic

relationship) rather than individual analyte correlation by

univariate analysis alone, we performed an exhaustive

search to find analyte subgroups whose aggregate levels

maximally correlated with cognitive change mea-

sures.18,24,25 Hypothesis 1 (H1) tested how likely we were

to see greater or equal correlation with random analyte

subgroups by sampling 10,000 random analyte subgroups

from among all analytes that met the 50% detection

threshold and computing the correlation values. Hypothe-

sis 2 (H2) tested how likely we were to randomly observe

greater or equal correlation between the aggregate activity

of an analyte subgroup and a response marker by per-

muting the values of each response marker 10,000 times

and computing the correlation values to the aggregate

analyte levels. P-values were estimated as the proportion

of randomized responses with equal or greater correlation

to aggregate analyte levels than the actual response.

Functional pathway analysis on analytes of
interest

The analytes of significance identified as being shared

across both the Discovery and ADNI cohorts in at least

one time point in the analyte subgroup search above were

entered into STRING: functional protein association net-

works for pathway enrichment analysis.26 The most sig-

nificant GO terms related to biological process identified

in STRING (P < 0.05) were summarized into nonredun-

dant hierarchical terms by their semantic similarity via

ReviGO,27 using SimRel28 as the clustering algorithm with

a similarity measure of 0.70, with the whole Uniprot

database providing GO term sizes and reported in appro-

priate plots. The Reactome pathway database was used in

enrichment analysis to identify targeted analyte pathways

of interest in any secondary analysis.29

Structural MRI acquisition and processing

ADNI 1.5-T MRI scans from MCI subjects performed at

baseline were processed using cross-sectional FreeSurfer

(version 5.1.0, default parameters).30 The processing

included conformation to isotropic cubic mm resolution,

bias field correction, segmentation of the hippocampi

Table 2. List of inflammatory analytes analyzed in relation to longitudinal cognitive change.

RBM Name Gene RBM Name Gene

1. Alpha-1-Antitrypsin (AAT) SERPINA1 27. Interleukin-12 Subunit p40 IL12B

2. Alpha-2-Macroglobulin A2M 28. Interleukin-12 Subunit p70 IL12P70

3. Apolipoprotein A-I APOA1 29. Interleukin-15 IL15

4. Beta-2-Microglobulin B2M 30. Interleukin-17 IL17A

5. Brain-Derived Neurotrophic Factor BDNF 31. Interleukin-18 IL18

6. Complement C3 C3 32. Interleukin-8 CXCL8

7. C-Reactive Protein CRP 33. Interleukin-23 IL23A

8. Eotaxin-1 CCL11 34. Macrophage Inflammatory Protein-1 alpha CCL3

9. Fibrinogen FGA 35. Macrophage Inflammatory Protein-1 beta CCL4

10. Factor VII F7 36. Matrix Metalloproteinase-3 MMP3

11. Ferritin FTH1 37. Matrix Metalloproteinase-9 MMP9

12. Granulocyte-Macrophage Colony-Stimulating Factor CSF2 38. Monocyte Chemotactic Protein 1 CCL2

13. Granulocyte Colony-Stimulating Factor CSF3 39. Matrix Metalloproteinase-2 MMP2

14. Haptoglobin HP 40. Myeloperoxidase MPO

15. Intercellular Adhesion Molecule 1 ICAM1 41. Neuron-Specific Enolase (NSE) ENO2

16. Interferon gamma IFNG 42. Plasminogen Activator Inhibitor 1 (PAI-1) SERPINE1

17. Interleukin-1 alpha IL1A 43. Serotransferrin TF

18. Interleukin-1 beta IL1B 44. Stem Cell Factor SCF

19. Interleukin-1 receptor antagonist IL1RN 45. T-Cell-Specific Protein RANTES CCL5

20. Interleukin-2 IL2 46. Tissue Inhibitor of Metalloproteinases 1 TIMP1

21. Interleukin-3 IL3 47. Tumor Necrosis Factor alpha TNF

22. Interleukin-4 IL4 48. Tumor Necrosis Factor beta LTA

23. Interleukin-5 IL5 49. Tumor necrosis Factor Receptor 2 TNFRSF1B

24. Interleukin-6 IL6 50. Vascular Cell Adhesion Molecule-1 VCAM1

25. Interleukin-7 IL7 51. Vascular Endothelial Growth Factor VEGFA

26. Interleukin-10 IL10 52. Vitamin D-Binding Protein GC

53. von Willebrand Factor VWF

ª 2020 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association 1229
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from which the bilateral hippocampal volume was com-

puted, and estimation of total intracranial volume.31 The

baseline hippocampal volume was corrected for head size

by division by the intra cranial volume.

Clustering analysis

To further provide biological context to the key shared

analyte robustly identified across both ADNI and Discov-

ery cohorts it was subjected to consensus clustering, an

unsupervised class discovery approach to identify co-oc-

curring analytes.32 Using the quantitative values of the

analytes, the number and possible memberships to clus-

ters were found for each cluster. Cluster size for each

group was fixed where relative increase in consensus was

observed to have no appreciable increase. The analyte

groups were tested for enrichment in pathways using

ClusterProfiler tool using the Reactome Pathway Data-

base33 and the top five enriched Reactome pathways were

interpreted.

Statistical analysis

Given the limited number of conversion events (dementia

onset or highest quartile of CDR-SB change) during inter-

mediate follow-ups (9 and 12 months) in both the Dis-

covery and ADNI MCI cohorts, neither Cox proportional

hazards model nor a time-dependent receiver operating

characteristic (ROC) were found to be adequate for the

data. With the Discovery sample size, and conservatively

choosing a Bonferroni corrected significance level of 0.005

to allow for up to 10 key analytes to be compared, there

would be 80% power to detect correlations between ana-

lytes and changes in cognitive measures that exceed 0.5.

Key inflammatory analytes shared between both cohorts,

curated from the synergistic subgroup analysis described

previously and used for functional pathway analysis, were

next evaluated in predicting cognitive change after adjust-

ing for age, sex, baseline MMSE, and APOEe4 status (pre-

sent vs. absent). With five adjustment factors, the

Discovery cohort models included no more than three

biomarkers concurrently to maintain a 5 to 1 ratio of

observations to variables as noted in prior statistical liter-

ature.34 Two statistical approaches for variable selection

were used. First, a best subset regression analysis was used

to identify two to three biomarkers that best predicted

outcome. In this approach, the third biomarker solution

was used only if including the third biomarker increased

the R2 by at least 1%. As an alternative, penalized regres-

sion using LASSO regression was performed, using Akaike

information criterion (AIC) as the stopping rule. In gen-

eral, as the LASSO approach was very conservative the

best subset results are presented.

A log (base 2) transformation allowed Pearson correla-

tions to be fit for exploratory univariate analysis. Along

with estimates of correlation, 95% confidence intervals

and p-values with false discovery rate (FDR) adjustment

were calculated. Normality of biomarkers was evaluated

using Shapiro–Wilk tests and graphical methods. Sensitiv-

ity analyses were also performed to evaluate the robust-

ness of the key analytes of significance. All analyses were

performed at each time point using the patients with

available cognitive change measures at that point. Sepa-

rate analyses were performed at each time point because

we hypothesized that the biomarkers related to cognitive

change may change over time and the sample size did not

allow for modeling of interactions to capture these com-

plex relationships. We chose not to impute change mea-

sures for missing responses as doing so would not

improve the information available.35

Classical ROC analyses were performed for subjects

only in the ADNI cohort, to explore if key CSF inflam-

matory analytes were comparable to hippocampal volume

and CSF NfL in their clinical utility as all three data were

available. Analyses were performed for a base model with

above three variables alone and for an adjusted model

that included age, sex, education years, APOEe4 status,

and CSF Ab/ptau ratio. The area under the ROC curve

(AUC) was maximized in these analyses. In this setting,

the AUC measures the intrinsic ability of the analytes to

discriminate between subjects who progress ≥ 3 CDR-SB

points, the highest quartile CDR-SB change in the ADNI

cohorts for two year follow-up. Analysis was performed

using SAS software (version 9.4), R software (version 3.x;

Vienna, Austria), and SPSS (Version 22.0. Armonk, NY:

IBM Corp) an overall significance level of 0.05 was

assumed.

Results

Subject demographics of the Discovery and ADNI cohorts

are presented in Table 1.

Analyte subgroup analysis for synergistic
relationships in discovery and ADNI cohorts

Analyte levels that show higher correlation when consid-

ered together rather than the individual component ana-

lytes (synergistic analyte analysis) are reported in Tables

S3 and S4 and Figures 2A and 3A. The Discovery

cohort had a similar number of analytes compared with

the ADNI cohort that relate to cognitive changes in the

CSF and in plasma. The analytes noted in relation to

CDR-SB change in a consistent direction among both

cohorts in the CSF included CCL2, CCL4, and FGA,

while in plasma the shared analytes in a consistent
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direction included APOA1, BDNF, and vWF. Among

both cohorts, the CSF analytes noted in relation to

MMSE change in a consistent direction across both

cohorts included AAT, MMP3, and CRP, while in

plasma MMP2, CXCL8, A2M, and Factor VII were best

correlated to MMSE change consistently across both

cohorts (Figs. 2A and 3A).

Functional pathway analysis

The analytes that significantly correlated to at least one

time point of longitudinal follow-up in both Discovery

and ADNI cohorts in a consistent direction within the

subgroup synergistic analysis were ranked as the most

robust for functional pathway analysis. These analytes

(for CSF: AAT, CCl2, CCL4, CRP, FGA, and MMP3 and

for plasma: A2M, APOA1, BDNF, CXCL8, F7 MMP2,

and vWF) were entered into STRING for functional path-

way enrichment analysis for CSF and plasma in different

runs. In the CSF, the largest clusters were most represen-

tative of natural killer cell chemotaxis, and regulation of

endothelial cell apoptotic process. While in the plasma,

clusters were representative of extracellular matrix organi-

zation, blood coagulation and fibrin clot formation, and

platelet degranulation (Figs. 2B and 3B).

Statistical analysis

Univariable analysis in CSF and plasma

In a complementary analysis, univariable Pearson correla-

tions after FDR correction in the Discovery cohort, only

CSF levels of CCL2 positively correlated to change in

CDR-SB scores at 15 months, and after adjusting for

covariates (age, sex, baseline cognitive score, APOE e4 sta-

tus), the association of CCL2 was still significant

(Table S4A).

Within the ADNI cohort, there were no significant CSF

analytes on univariable analysis that related to change in

CDR-SB or MMSE scores after adjusting for covariates.

In the plasma, only levels of MMP2 was negatively corre-

lated to change in MMSE scores at 24 months, and the

association was still significant after adjusting for covari-

ates (age, sex, baseline cognitive score, APOE e4 status)

while applying the FDR correction (Table S5).

Multivariable models CSF and plasma

Across both cohorts, CSF CCL2 was the most robustly

selected parameter being chosen in 9 out of 10 models,

and was significant at the 0.05 level in five models. MMP3

was chosen in four models and met significance threshold

Figure 2. (A) Heat map denoting significant analytes from ADNI and Discovery datasets in the CSF from the subgroup synergistic analysis

correlated to cognitive change (CDR-SB or MMSE) for 9,12,15,24, and 36 months. Red: positive correlation, Blue: negative correlation, Magenta:

has representation in both positive and negative correlation network of analytes. Given that higher CDR-SB is worse cognition and function while

lower MMSE is worse cognition, a positive correlation in CDR-SB relates to worsening cognition while the negative MMSE correlations relates to

worsening cognition. (B) Abundance of Gene Ontology (GO) terms related to biological processes that enrich for key shared analytes between

ADNI and Discovery datasets in the CSF in relation to cognitive change (CDR-SB or MMSE). Analytes included: AAT, CCl2, CCL4, CRP, FGA, and

MMP3. GO term most representative of each cluster is noted.
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in three models. CSF CCL4 selected in four models, was

significant in only two models. In the Discovery cohort,

the multivariable models explained 27–42% of the vari-

ability in cognitive change, while in ADNI, only 13–19%
of the variability in cognitive change was explained with

these models (Table 3). Additional sensitivity analysis to

evaluate the role of extreme measures using a rank based

analysis noted CSF CCL2 as significant in all prior models,

MMP3 was no longer significantly related to CDR-SB

change at 15 months.

In the plasma, a clear pattern replicating the findings

between Discovery and ADNI data does not appear to be

present in the multivariable models (Table 4). Across

both cohorts, there were no analytes with correlations in

opposing directions to the same cognitive change scores

when correlations exceeded +/- 0.2 in the univariable

models in CSF and plasma. In the multivariable models

with MMSE, plasma BDNF and MMP2 differ in correla-

tion direction between cohorts. Plasma MMP2 changes

correlation direction within the ADNI cohort over time,

indicating the instability of this effect when cognitive

change is characterized by MMSE.

Inflammatory diseases and NSAID intake

No difference was noted in the analytes of significance

when adjusted for current NSAID intake or when consid-

ering inflammatory diseases in clinical history within the

Discovery cohort. Adjusting for individual CSF/plasma

albumin ratio again noted no impact on key analytes of

significance (analyses not presented).

Comparing inflammatory analytes in ADNI versus the
Discovery cohort

The inflammatory analyte correlations to cognitive change

within the Discovery cohort were larger than in the ADNI

dataset (Tables S4 and S5). The analytes that were identified

as correlating to at least one longitudinal cognitive measure

across both datasets could be further validated after

accounting for multiple covariates in the multivariable

models (Tables 3 and 4). CSF CCL2 was identified as a key

analyte shared between cohorts in relation to CDR-SB

change. In a subgroup analyses of ADNI MCI participants

with CSF Ab42 < 192 pg/mL (and additionally CSF t-tau/

Figure 3. (A) Heat map denoting significant analytes from ADNI and Discovery datasets in the plasma from the subgroup synergistic analysis

correlated to cognitive change (CDR-SB or MMSE) for 9,12,15,24, and 36 months. Red: positive correlation, Blue: negative correlation, Magenta:

has representation in both positive and negative correlation network of analytes. 3B: Abundance of Gene Ontology (GO) terms related to

biological processes that enrich for key shared analytes between ADNI and Discovery datasets in the plasma in relation to cognitive change.

Analytes chosen for their consistency of response included: A2M, APOA1, BDNF, CXCL8, F7, MMP2, and vWF. GO term most representative of

each cluster is noted.
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Ab42> 0.4), the direction of correlation between CCL2 and

CDR-SB change on univariable analysis was consistent

between 24 and 36 months and met significance threshold

at 36 months (Table S6). From the multivariable analysis, a

doubling of baseline CSF CCL2 levels in the Discovery

cohort predicted a 2.8 point estimated increase in CDR-SB

change at 15 months. A similar doubling in the ADNI MCI

cohort predicted a 0.9 point increase of CDR-SB over

24 months and 1.4 point over 36 months, after accounting

for age, sex, education, APOE e4 status, and baseline cogni-

tive scores (Table 3, Fig. 4).

To provide a biological context to the role for CCL2,

we next explored the clustering of CCL2 to other inflam-

matory analytes. We note that in the Discovery cohort

Table 3. CSF biomarkers of CDR-SB and MMSE change are shown for both cohorts at specified time points, after adjustment for age, sex, APOE

status and education.

Time

CDR-SB change MMSE change

Factor Estimate (95% CI) P-value Factor Estimate (95% CI) P-value

Discovery cohort

9 months CCL2 1.23 (0.24, 2.22) 0.016 AAT 1.50 (�0.85, 3.85) 0.20

MMP3 �0.97 (�1.64, �0.29) 0.006 CCL2 �1.54 (�4.09, 1.02) 0.23

MMP3 2.05 (0.32, 3.78) 0.022

15 months FGA �0.27 (�0.73, 0.20) 0.25 AAT 1.53 (�1.24, 4.30) 0.27

CCL2 2.82 (1.30, 4.34) <0.001 CCL2 �2.36 (�5.47, 0.76) 0.13

MMP3 �0.94 (�1.82, �0.05) 0.039 CCL4 1.48 (�0.15, 3.12) 0.073

ADNI Cohort

12 months AAT 0.37 (�0.10, 0.85) 0.12 CCL2 �1.45 (�2.54, �0.36) 0.009

CCL4 0.30 (�0.03, 0.63) 0.071 FGA 0.49 (0.13, 0.86) 0.008

FGA �0.23 (�0.40, �0.05) 0.011

24 months CCL2 0.86 (�0.04, 1.75) 0.062 CCL2 �1.46 (�3.19, 0.26) 0.096

CCL5 0.41 (0.02, 0.79) 0.041 CCL5 �0.43 (�1.18, 0.31) 0.25

CRP �0.26 (�0.65, 0.13) 0.20

36 Months CCL2 1.43 (0.13, 2.73) 0.031 CCL2 �2.87 (�5.16, �0.58) 0.015

CCL4 0.76 (0.01, 1.52) 0.047 CCL4 �1.36 (�2.71, �0.00) 0.050

MMP3 �0.53 (�1.25, 0.19) 0.15 CCL5 0.74 (�0.50, 1.98) 0.24

P-value < 0.05 is noted in bold

Table 4. Plasma biomarkers of CDR-SB and MMSE change are shown for both cohorts at specified time points, after adjustment for age, sex,

APOE status and education.

Time

CDR-SB Change MMSE Change

Factor Estimate (95% CI) P-value Factor Estimate (95% CI) P-value

Discovery cohort

9 months CXCL8 0.37 (�0.39, 1.12) 0.33 A2M �4.24 (�7.67, �0.81) 0.017

F7 �1.19 (�2.04, �0.34) 0.007 F7 �1.97 (�3.81, �0.13) 0.037

MMP2 �0.70 (�1.80, 0.41) 0.21 BDNF 0.28 (�0.23, 0.79) 0.27

15 months CXCL8 1.75 (0.66, 2.84) 0.003 A2M �4.37 (�8.62, �0.12) 0.044

APOA1 �1.41 (�3.75, 0.93) 0.23 F7 �1.83 (�4.26, 0.60) 0.13

F7 �0.85 (�2.14, 0.44) 0.19 MMP2 �1.28(�4.47, 1.92) 0.42

ADNI Cohort

12 months A2M 0.66 (0.06, 1.27) 0.032 CXCL8 1.03 (0.34, 1.71) 0.004

APOA1 0.28 (�0.13, 0.69) 0.18 APOA1 �0.61 (�1.50, 0.28) 0.18

BDNF �0.24 (�0.63, 0.15) 0.23

24 months APOA1 0.57 (�0.08, 1.23) 0.086 APOA1 �1.16 (�2.35, 0.03) 0.057

BDNF 0.23 (�0.05, 0.51) 0.10 MMP2 1.48 (0.88, 2.08) < 0.001

MMP2 �0.56 (�0.89, �0.22) 0.001

36 months A2M 1.73 (�0.28, 3.74) 0.090 A2M �1.29 (�3.91, 1.33) 0.33

MMP2 1.12 (�0.19, 2.42) 0.093 APOA1 �1.26 (�3.13, 0.61) 0.18

P-value < 0.05 is noted in bold.
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CCL2 closely clusters with B2M, CXCL8, FGA, MMP2,

TIMP1, and VCAM1 in the CSF (Fig. S1) and plasma

CCL2 with BDNF, CCL4, CCL11, IL-18, PAI-1, and

VEGFA (Fig. S2). These analytes in the CSF and plasma

taken together are enriched in interleukin-10 (IL-10),

interleukin-4 (IL-4), and interleukin-13 (IL-13) signaling

pathways within the Reactome database (Tables S7 and

S8). In the ADNI cohort, CSF CCL2 did not significantly

cluster with other CSF analytes, while in the plasma,

CCL2 and correlated inflammatory plasma analytes were

enriched for the IL-10 signaling pathway (Fig. S3, Tables

S9). Summary statistics of these analytes are provided in

Data S1.

CSF versus plasma inflammatory analytes in predicting
future cognitive decline

Receiver operating characteristics based on the logistic

regression models determined the utility of CCL2 com-

pared with baseline CSF NfL and hippocampal volume to

predict the highest quartile of CDR-SB change over two

years in the ADNI cohort. The area under the curve

(AUC) of the adjusted model (age, sex, years of educa-

tion, APOE ɛ4 genotype, and CSF Ab1–42/p-tau) when it

included CSF CCL2 was 0.66, CSF NfL was 0.63, and hip-

pocampal volume was 0.69 (Fig. 5). The resulting AUCs

and overlapping 95% confidence intervals were statisti-

cally not different for these biomarkers (Table S10). A

nonsignificant correlation between CSF CCL2 and

baseline hippocampal volume, r = �0.15, P = 0.12 was

noted, while the correlation between CSF CCL2 and CSF

NfL was r = 0.19, P = 0.042.

Discussion

This study undertook an unbiased approach to evaluate

the role for inflammatory analytes on clinical progression

using a multi-analyte panel with well characterized MCI

patient cohorts and positive AD CSF biomarkers. Our

results across two cohorts of baseline CSF CCL2 predict-

ing rapid clinical decline lends credence to prior reports

of CCL2 impacting clinical progression in AD.13,36 In

addition as a novel finding, by carefully characterizing

chemokines that cluster closely with CCL2 in the CSF

and plasma using bioinformatics tools, we are able to

posit the relevance of IL-10 inflammatory pathway dys-

regulation as a correlate of clinical progression in MCI.

This result is consistent with our initial hypothesis that a

proinflammatory analyte profile at baseline would relate

to a faster rate of longitudinal clinical progression in the

MCI stage. Furthermore providing clinical context to

these results, we note that baseline measurements of the

cytokine CSF CCL2 has comparable discriminatory power

to neurodegeneration markers, CSF NfL and MRI hip-

pocampal volume, in predicting the highest quartile of

CDR-SB change over two years (≥3 CDR-SB) in MCI-

AD, but has limited correlation with either. Of note, 3

point CDR-SB change is over twice the change among

Figure 4. Histogram with normal distribution score of baseline CSF CCL2 levels, in relation to longitudinal CDR-SB change (in heat colors) and

average CDR-SB change of cohort at each time point (as a line in legend). Data from Discovery cohort (9 and 15 months), ADNI (12, 24 and

36 months).
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neuropathology confirmed AD patients in the National

Alzheimer’s Coordinating Center (NACC) database (Avg

0.9, SD 0.7, per year), when they met criteria for MCI at

initial visit.2

CCL2 (also known as monocyte chemoattractant pro-

tein-1, MCP-1) is among the key cytokines that recruit

monocytes to a site of inflammation. Infiltration of these

blood derived immune cells toward Ab plaque have been

studied.37,38 An increase in CSF CCL2 levels has been

linked to the transition from MCI to AD and a faster rate

of cognitive decline.13,36 Plasma CCL2 levels have been

observed to increase with the increasing severity of AD

dementia and associated with a 2-year rate of cognitive

decline in AD and MCI.36,39 Among asymptomatic nor-

mal aging individuals, longitudinal increases in plasma

CCL2 levels were associated with decline in memory40

and associated with increased long-term risk of stroke in

a meta-analysis of population studies.41

IL-10 Reactome pathway was enriched among the CSF

and plasma inflammatory analytes that CCL2 clustered

with in both ADNI and the Discovery cohorts, while IL-

13 and IL-4 pathways were enriched only in the Discovery

cohort. IL-10, IL-13, and IL-4 pathways are all associated

with anti-inflammatory changes noted in relation to inhi-

bition of autoimmunity and infections.42,43 The down-

stream proinflammatory factors in the IL-10 Reactome

pathway often suppressed by IL-10 were elevated. Given

the Lower Limit of Quantification (LLOQ) of the CSF IL-

10 assay only 3 of 48 patients in the Discovery cohort

had measurable IL-10 levels, limiting the assay’s utility in

estimating IL-10’s direct relevance in this context. In con-

trast to CCL2, the levels of MMPs were less consistently

correlated to cognitive change in both cohorts.

CCL2 compared to neurodegeneration
markers

To evaluate the utility of CSF CCL2 in predicting rapid

cognitive decline, we compared its effectiveness against

baseline CSF NfL and MRI hippocampal volume as they

both provide complementary information. Imaging mea-

sures like hippocampal volume represent the magnitude

of the neuropathologic damage accumulated over time,

unlike CSF markers like NfL that reflect its production/

clearance at one time point.44 CSF NfL has been noted to

correlate with rapid cognitive decline in MCI stage of AD

and is thought to be related to degeneration of large-cal-

iber axons.45 MRI measure of hippocampal volume is

accepted as an indicator of neurodegeneration in the A/T/

N classification.44 In the ROC analysis, CSF CCL2 had

nonsignificant differences from CSF NfL and hippocampal

volumes in predicting rapid cognitive decline in the

adjusted models that included covariates of clinical

importance. In the base model when these biomarkers

were considered without adjustment for covariates, CSF

CCL2 performed slightly better than CSF NfL (0.63 vs.

0.52), but was still within the 95% CI. The lack of corre-

lation between CCL2 and neurodegeneration biomarkers

suggests that they likely capture different pathobiological

signatures contributing to cognitive decline in MCI-AD.

Figure 5. Receiver operating characteristic analysis curves denoting CSF CCL2, CSF NfL, and hippocampal volume for rapid cognitive decline (≥ 3

CDR SB change over two years, highest quartile among subjects) from ADNI cohort. Base models of the three biomarkers alone and adjusted

models accounting for age, sex, years of education, APOE ɛ4 genotype, and CSF Ab1–42/p-tau.
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Inflammatory changes in the context of
neurodegeneration markers and clinical
progression

In our prior analysis, we had found TNFR2, SCF, and

Ferritin strongly correlated to neurodegeneration markers

and were expressed in the brain transcriptome.18 In the

current analysis, the above analytes were not significant in

predicting longitudinal cognitive change within three

years. The key inflammatory pathways are also likely to

be distinct in different stages of clinical AD and needs

further elucidation.

Even as migration of neutrophils toward amyloid pla-

ques are noted in some mouse models of AD,46 this is an

area that needs future investigation in MCI-AD patients

to determine if CCL2 determined immune cell migration

plays a role in impacting cognitive outcomes. The study

data also point to a wide variance in the inflammatory

analyte levels within patients at the same stage of MCI-

AD suggesting different degrees of inflammatory pathway

dysregulation. Taken together these data suggests a pro-

mise for targeted therapies against key inflammatory

pathways among patients in whom it is most dysregulated

to have a significant clinical outcome within the time

widows described in this study. The shared AUCs across

CSF CCL2 and neurodegeneration biomarkers in predict-

ing rapid cognitive change over two years but a lack of

significant correlation between them, suggest they could

play parallel roles in predicting disease progression.

Differences between Discovery and ADNI
cohorts

The current study noted key shared inflammatory analyte

correlations that were consistent between the Discovery

and ADNI cohorts. The Discovery cohort analytes had

larger correlation coefficients than ADNI in relation to

degree of cognitive decline. The correlations of cognitive/

functional change to CSF CCL2 are robust in the Discov-

ery data at 15 months, and get stronger over the 3-year

time of follow-up in the ADNI data. This may reflect a

slower progressing population in ADNI, or an earlier

stage of MCI in ADNI compared to Discovery cohort as

noted in Figure 4 and Table 1. The common analytes

meeting significance threshold in both ADNI and Discov-

ery cohort in the CSF was CCL2 and in the plasma was

CXCL8 (IL-8). CXCL8 was also the only analyte that clus-

tered with CCL2 in both the Discovery and ADNI cohort

plasma pathway analysis (Table S11). Additional differ-

ences between the two cohorts include differences in

duration of follow-up, AD biomarker levels at baseline

and patient recruitment characteristics: a memory clinic

sample of MCI subjects with notable cognitive concerns

in the Discovery cohort, versus a longitudinal MCI cohort

in ADNI with likely different medical and environmental

biases, as noted in the less robust correspondence in

plasma analytes compared to CSF between the two

cohorts. Despite these differences in data collection and

patient variables, key shared analytes were still identified

at baseline to have a longitudinally clinical impact across

both cohorts.

Strengths and limitations

The study’s strengths include a) concomitant measure-

ment of the same analytes in the CSF and plasma; b)

well-characterized patients including clinical variables (in-

flammation, vascular risk factors and medications), APOE

e4 status, and AD biomarkers, longitudinal assessment of

cognition and validation across two different cohorts with

potentially different recruitment biases; c) multiple inter-

nal and external validity checks to account for quality of

data and measurements, and d) going beyond single ana-

lyte associations to meaningfully assess multiple analytes

and narrow our focus to key activated biological processes

related to inflammation in AD with high confidence.

Despite these strengths, this study is not comprehensive

in determining the profile of inflammatory analytes as

some (e.g., YKL-40, sTREM2) were not analyzed. The

Discovery cohort and ADNI longitudinal cognitive mea-

surements do not have the same follow-up duration.

Additional inflammatory pathways could also be con-

tributing to cognitive outcomes than those posited fol-

lowing our analysis. We also have limited insight based

on baseline measures alone, as they themselves could be

dynamic and change longitudinally, contributing to varia-

tion in the temporal window of strongest cognitive out-

come in different stages of AD in both cohorts.

Future studies are needed to evaluate potential inflam-

matory analytes/pathways not covered in this analysis.

Our results pass a stringent multiple comparisons cutoff,

but it is possible that with weaker enrichment patterns

other analytes of significance may become more salient

with increased sample sizes. Lack of neuropathologic con-

firmation of diagnosis also limits our understanding of

the role for mixed pathology in MCI-AD.

Conclusion

We found that cognitive decline in MCI-AD was best pre-

dicted by CSF CCL2 and likely related to IL-10 pathway

dysregulation in the CSF and plasma. Baseline CSF CCL2

has comparable utility to CSF NfL and hippocampal vol-

ume in predicting rapid cognitive decline. Exploring the

triggers of this inflammatory response related to chemo-

taxis of immune cells and prospect of their modulation
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provides a potential therapeutic opportunity that is of

clinical interest in MCI-AD.
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