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Protein Footprinting Comes of Age: Mass
Spectrometry for Biophysical Structure
Assessment*□S

Liwen Wang‡ and Mark R. Chance‡§

Protein footprinting mediated by mass spectrometry has
evolved over the last 30 years from proof of concept to
commonplace biophysics tool, with unique capabilities for
assessing structure and dynamics of purified proteins in
physiological states in solution. This review outlines the
history and current capabilities of two major methods of
protein footprinting: reversible hydrogen-deuterium ex-
change (HDX) and hydroxyl radical footprinting (HRF), an
irreversible covalent labeling approach. Technological ad-
vances in both approaches now permit high-resolution
assessments of protein structure including secondary
and tertiary structure stability mediated by backbone in-
teractions (measured via HDX) and solvent accessibility of
side chains (measured via HRF). Applications across
many academic fields and in biotechnology drug devel-
opment are illustrated including: detection of protein
interfaces, identification of ligand/drug binding sites,
and monitoring dynamics of protein conformational
changes along with future prospects for advancement
of protein footprinting in structural biology and bio-
physics research. Molecular & Cellular Proteomics 16:
10.1074/mcp.O116.064386, 706–716, 2017.

INTRODUCTION TO FOOTPRINTING: ROOTS AND HISTORY

“Footprinting” based technologies were initially developed
to understand nucleic acids structure and dynamics. Initially
enzymatic cleavage of DNA was used to sample “exposed”
sites revealing the “protected” DNA binding site for a protein-
DNA complex (1) The precision and accuracy of the methods
were later refined by Galas and Schmitz establishing foot-
printing as a quantitative biophysics tool for studying macro-
molecular interactions (2, 3). Over time chemical labeling ap-
proaches using small reagents, including the hydroxyl radical,
(Fig. 1A) were developed to precisely define the boundary
between exposed and buried regions and to extend footprint-
ing even to in vivo studies (4–6). Early protein footprinting

studies included hydrogen exchange footprinting to examine
protein structure (advanced by Rosa and Richards) (7, 8)
whereas alternative approaches to probe conformational
change used enzymatic cleavage and gel analysis (e.g. similar
to those of nucleic acids footprinting) to successfully define
Ab epitopes (9).
Advances in mass spectrometry revolutionized protein foot-

printing starting in the early 1990s. For example, in chemical
labeling studies of surface accessible lysine residues (10, 11)
mass spectrometry methods were employed to identify mod-
ification sites based on mass shift (Fig. 1B). At the same time
the hydrogen-deuterium exchange (HDX)1 field adopted mass
spectrometry introducing intact protein exchange MS (12, 13)
as well as localization of exchange through cleavage and
peptide analysis by MS (13). As protein footprinting tech-
niques evolved (similar to the development of nucleic acids
footprinting), enhancing structure resolution and measure-
ment accuracy were needed to move the field forward. In
addition, footprinting experiments typically need to balance
the need for comprehensive labeling (required to get a good
signal across many sites) while avoiding artifacts of the label-
ing process itself. In this respect HDX-MS is advantageous as
it represents a minimal perturbation of the protein. For other
protein labeling methods, which are typically irreversible, a
detailed understanding of the chemistry of the individual
reagents, development of appropriate dosimetry measure-
ments, and developing quantitative mass spectrometry read-
outs of modified species with adequate dynamic range have
been critical to progress. In this review, we discuss the evo-
lution of reagents and MS methods that now allow accurate
medium to high-resolution assessments of protein structure in
solution to be routinely completed using micrograms of pro-
tein samples that can be poised in a wide range of biochem-
ical states.
Description of Labeling Technologies for Footprinting: Deu-
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chain Structure of Proteins—HDX-MS accurately reports sta-
bility of the hydrogen bonding of backbone amide residues by
measuring isotopic exchange of hydrogen with its deuterium
isotope (14). In continuous HDX labeling a target protein so-
lution is labeled by dilution or rapid buffer exchange in pure
D2O to produce final deuterium concentrations greater than
95% (15). Exchange is monitored for time periods ranging
from seconds to days until the desired level of exchange takes
place. Aliquots of the reaction are acid quenched at selected
time points and analyzed by LC-MS subsequent to protease
cleavage separately. Peptide mass values and intensities are
extracted from the chromatogram and mass shifts are moni-
tored versus time as changes in the centroid mass (Fig. 2A).

Hydroxyl radicals suitable for HRF labeling can be gener-
ated by various methods such as radiolysis of water with
electrons, x-rays or gamma radiation, photolysis of peroxide,
transition metal-dependent chemical reactions with peroxide,
or high voltage electrical discharge in water (16–28). The
hydroxyl radicals abstract hydrogen from aliphatic residues
and directly attack sulfur atoms and aromatic rings (29). The
peptide-radical species generated are efficiently quenched by
oxygen in solution leading to the final products detected by
MS. Typically, in HRF-MS a target protein solution is labeled
for defined times and the extent of unmodified and modified
species is determined after protease cleavage by mass based
extraction from the chromatogram for peptides of interest
(Fig. 2B). Compared with chemical reactions such as Fenton

chemistry (30) where minutes of exposure to labeling reagents
is required, synchrotron radiolysis (29, 31, 32) and laser pho-
tolysis approaches (33, 34) have microsecond to millisecond
exposure times.
Experimental Approaches—
a. Bottom-up Proteomics to Deconstruct, Extract, and

Quantify Structural Information in Footprinting Experiments—
Subsequent to labeling of the target protein, mass spectrom-
etry-based bottom up proteomic approaches are applied to
identify and quantitate peptides across the protein sequence
that accumulate mass increases as a function of labeling. The
ability to associate specific mass accumulations with specific
peptides generated by protease cleavage provides details of
local structure. Given the special conditions required for min-
imizing back-exchange in HDX-MS, acidic tolerant proteases
such as pepsin are widely used to digest deuterated proteins
at pH 2.5 (where exchange is minimized) in an on-line format
using immobilized enzyme that provides rapid and reproduc-
ible cleavage in minutes (35, 36). Aside from rapid protease
digestion, the accuracy and precision of HDX-MS data has
benefited from the use of ultra-high pressure reverse phase
chromatography systems (UPLC) that provide efficient and
fast separation of peptide fragments (�6 min) at reduced
temperature (0 °C) (35).
Because oxidative modifications are stable and irreversible,

the downstream analysis for HRF-MS, especially direct tan-
dem MS detection of modified sites, are more flexible than for

FIG. 1. Footprinting strategy for mapping DNA-protein binding via cleavage (left) and protein-protein interactions via modification
(Right). A, Proteins (Green) interact with labeled DNA. In control experiments, all nucleotide sites can be cleaved and the DNA gel shows an
uninterrupted ladder of fragments with constant intensities. In the protected lane, the position of the bound proteins are revealed by decreases
in band intensities. B, Protein modification sites are observed on the pictured 3-helix bundle; these modified sites are distributed onto peptides
upon protease cleavage. When a protein interacts with another protein, reduced modification occurs on the peptides (and their modification
sites) that form part of the interaction surface.
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HDX. Digestion conditions can be optimized for maximal cov-
erage (e.g. selections of denaturant, reducing reagents,
cleanup procedures and enzyme combinations). After diges-
tion, peptide mixtures containing both unmodified and mod-
ified species are separated by reverse phase LC and identified
by MS. The most common oxygen adducts (�14, �16 Da)
usually elute prior to unmodified species because of the in-
creased polarity conferred by the addition of oxygen whereas
Arg or His oxidized species elute later than the unmodified
species owing to different chemistries involved. By compari-
son with HDX-MS, hydroxyl radical labeling chemistry is com-
plex, and additional limitations include potential scavenging of
radicals by solutes such a sugars, glycerol, lipids, nucleotides
etc. that can interfere with labeling desired side chain targets.
b. Data Analysis and Interpretation of Mass Spectrometry-

based Footprinting Data—In HDX, deuterium incorporation
can be analyzed by the “centroid” or the “theoretical fit”
method. The centroid method measures the weighted m/z
average of each peptide distribution over the experimental
time course (13). Theoretical fit method determines the num-
ber of incorporated deuterium of a HDX peptide by fitting
multiple theoretical isotopic envelopes of the peptide consist-
ent with the observed isotopic distribution using least square
regression (37, 38). Fig. 3A illustrates H/D exchange data
(number of deuterons as a function of exchange time) when
ADAMTS13 (a disintegrin and metalloproteinase with a throm-
bospondin type 1 motif) is examined in the presence (red) and
absence (green) of monoclonal antibodies (39). The proposed

epitope includes five- loop regions (Fig. 3B) with slowed rates
of exchange upon Ab-antigen binding. The y axis in Fig. 3A
reflects the number of deuterons added to the peptide
whereas the x axis reflects the time of exchange. Faster
apparent rates of exchange reflect decreases in stability of the
involved backbone residues, in this case reflected as the sum
of their properties.
In HRF-MS peptide modification extents and rates (k) are

calculated using exact mass based extracted ion currents
from LC-MS. The fraction of unmodified or modified peptide is
derived from ratio of chromatography peak area under the
unmodified/modified species to total peak areas of all the
species (including unmodified and modified). Modification
rates of a peptide can be calculated from the dose-response
curve plotted by exposure times (t) versus unmodified fraction
of the peptide (y (t)) which follows a pseudo-first-order func-
tion: y�t� � e�kt. Fig. 4A illustrates typical data for the labeling
of ACKR3 (atypical chemokine receptor 3) bound with two
different ligands (chemokine CXCL12 and small molecule
CCX777) as a function of exposure time (40), the y axis here
reflects the degree of “unmodified” peptide whereas the x axis
reflects the labeling time. It was discovered that residues in N
terminus and ECL2 of ACKR3 have rates of modification
reduced by CXCL12 binding whereas multiple residues in the
transmembrane region vary in the case of the CCX777 com-
plex as shown in Fig. 4B.
c. Prospects for automation—Data acquisition and analysis

of large-scale structural MS data in protein footprinting ex-

FIG. 2. Flow chart of HDX-MS (Top) and HRF-MS (Bottom). A, Accessible hydrogen on backbone of the target protein are exchanged by
deuterons after incubating with D2O on timescales ranging from seconds to days and the exchange is quenched by lowering pH and
temperature of the reaction buffer. The uptake of deuterons is measured by use of rapid LC separation (�mins) and mass spectrometry
detection after fast pepsin digestion (�mins) at low temperature. HDX-MS curves are plotted by deuteron uptake (as a number or %) as a
function of exchange time. B, The target protein is exposed to hydroxyl radical labeling and the reaction is stopped by addition of quenchers
(e.g. 10 mM methionine amide). The extent of oxidation is measured by LC separation (�hours) and mass spectrometry after proteolysis under
optimized conditions. HRF dose response curves are plotted as a fraction of unmodified peptides versus exposure time.
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periments is a cumbersome task. Promisingly, integrated soft-
ware has been developed to ease the burden of data analysis.
MagTran (41) is a software that calculates centroid m/z for
HDX peptides. HX-Express is a semiautomated data process-
ing HDX-MS data that exports deuterium incorporation rate
curves and peak width plots (42). Three hierarchical HDX
software packages include: the deuterator (43), HD Desktop
(HDD) (44), and HDX Workbench (45); these provide more
automated features including web-based user interfaces for
entering raw data, visualization of complete HDX-MS data
and results, and comparison of multiple projects. TOF2H is
designed to automate data analysis of MALDI-based HDX
(46). HDX analyzer (47) is developed to evaluate structural
dynamics changes using HDX data with multiple statistical
methods included (R, Python, and RPY2).
ProtMapMS (www.neoproteomics.net) is a software that

integrates identification of peptide modifications, dose re-
sponse curves plotting and oxidation rate calculation for

HRF data analysis (48). Another software, ByologicTM (www.
proteinmetric.com) can identify protein modifications/se-
quence variants and visually compares MS1 and MS2 spectra
of modified and unmodified forms (49). Its capability of accu-
rate relative quantitation of oxidized variants relative to the
unmodified sequence provides utility in HRF data analysis.
Use of Structural Mass Spectrometry Data for Structural

Assessment—
a. Footprinting Provides Protein/Protein Interface Map-

ping—Binding interfaces involved in protein-protein interac-
tions typically occlude solvent and stabilize protein secondary
and tertiary structures of proteins in a complex. Thus, ob-
served reductions in labeling rates upon protein complex
formation in protein footprinting experiments (HDX-MS or
HRF-MS) are used to identify potential binding sites (50).
Many successful examples of mapping binding interfaces
have been published to date. However, as footprinting only
reports local information and cannot distinguish direct binding

FIG. 3. Typical data showing changes in labeling of a specific peptide in HDX-MS as a function of time and typical processed
selected peptides comparing two conditions. A, Comparative data for the H/D exchange behavior of various peptides in the N-terminal
domain of the ADAMTS13 protein in the presence (red) and absence (green) of scFv4–20, the single chain fragments of variable regions from
the tested antibody sequences (39). B, Representation of binding epitopes (Red) with the reduced HDX rates in five- loop region in the spacer
domain of ADAMTS13.
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from allosteric effects of binding, other strategies such as
mutagenesis, homology modeling, cross-linking or other
structural methods are combined to support an understand-
ing of the exact nature of the binding epitopes. For example,
a combination of HDX-MS and mutagenesis was used to
identify the binding interfaces between auto-antibodies de-
rived from patients with acquired thrombotic thrombocytope-
nic purpura and ADAMTS13, the host metalloproteinase tar-
get (39). Epitopes in five-loop regions with slowed HDX rates
upon binding were detected by HDX MS (Fig. 3B) whereas
mutations in the five proposed binding loops of ADAMTS13
eliminated antibody binding and provide support for the pro-
posed epitope. HDX-MS, like X-ray crystallography, can also
identify complex discontinuous epitopes that are missed by
linear methods such as peptide scanning and phage display.
This is clearly illustrated in a study that defined the binding of

factor H binding protein (fHbp), a key virulence factor and
vaccine antigen of Neisseria meningitides, with its bactericidal
mAb 12C1 (51) as the MS and crystallography data delineated
roles for both N-terminal and C-terminal peptide regions. Both
HDX-MS and HRF-MS were used to map the epitope of
human epidermal growth factor receptor (EPGR) that binds to
adnectin, a targeted biologic derived from the fibronectin
domain, these solution data were consistent with that from
crystallography (52, 53).
Protein footprinting techniques to probe protein-protein in-

teractions have been used heavily in biotechnology research,
these studies are quite important for verifying epitopes and
paratopes in monoclonal antibody drug development (54). In
addition, protein footprinting is valuable for comparing struc-
tures of “innovator” therapeutic proteins and their biosimilars;
this can help establish the potential equivalency of the bio-

FIG. 4. Typical data showing changes in peptide based oxidation rates in HRF-MS. A, Comparative data as dose response curves for
oxidative labeling of ACKR3 in complex with CXCL12 or CCX777. Purple and blue triangle are replicates of ACKR3:CXCL12, red circles and
black squares are replicates of ACKR3:CCX777. B, Oxidative labeling results are mapped on 2D topology plot of ACKR3. Residues are colored
using a gradient where red colored residues demonstrated lower oxidation rate (more protected) in ACKR3:CXCL12 than in ACKR3:CCX777
whereas blue colored residues demonstrated higher oxidation rate (less protected) in ACKR3:CXCL12 compared with ACKR3:CCX777. Gray
colored residues are not modified and half-colored circles indicate that an oxidation labeled one or both of two adjacent residues. The regions
within the dashed line are the seven transmembrane domains of ACKR3.
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similars with the patented drugs. For example, HDX-MS was
used to characterize the structure of various versions of insu-
lin (55, 56) and several forms of glucocerebrosidase (brand
name Cerezyme) for treatment of Gaucher disease (57). Like-
wise, HRF-MS was used to analyze conformations of thera-
peutic proteins including recombinant erythropoietin (EPO),
interferon �-2A (IFN), granulocyte colony-stimulating factor
(GCSF) (58).
b. Footprinting Provides Protein-Drug Interaction Informa-

tion—Small molecule binding to proteins does not bury a
large surface area as in protein-protein interactions, however
protein footprinting can reveal these drug-occupied surface or
near surface pockets. For example, HDX-MS was used to
analyze small molecule binding to a functioning PPAR� (per-
oxisome proliferator-activated receptor gamma) (59). HDX
analysis of one such synthetic compound (SR1664) revealed
that in contrary to agonists, SR1664 binding increased the
mobility of the PPAR� C-terminal end helix (H11), which is
close to another helix (H12) contributing to hydrogen bonds of

PPAR� and full agonists (60). In the glioma field the drug-
binding region of a potent inhibitor (SCB4380) targeting PTPRZ
(protein tyrosine phosphatase receptor-type Z) was iden-
tified by HDX-MS in catalytic pocket of PTPRZ-D1 (61). Like-
wise, HRF-MS analysis of serotonin type 4 receptor (5-HT4R)
in the presence and absence of an antagonist revealed the
ligand-binding pocket consistent with data from other GPCRs
and was used as well to define mechanisms of signal trans-
mission (62). Also using HRF-MS, a small molecule partial
agonist of atypical chemokine receptor 3 (ACKR3) was
mapped to its binding site (Fig. 4B) along with the details of
the receptor’s binding of chemokine CXCR12 (Fig. 5A) (63).
Overall, protein footprinting is seen to be very valuable in
mapping the binding of both small and large molecules to
proteins for both academic research and drug development.
c. Footprinting is a Structural Kinetic Probe of Protein Con-

formational Changes—Kinetics investigations of protein fold-
ing and dynamics are important applications of MS-based
protein footprinting. The protein folding of �1-antitrypsin was

FIG. 5. An example of the use of HRF-MS to probe absolute structure changes of receptor-chemokine interactions. A, Mapping of
protein footprinting oxidation labeling results on topology plot of CXCL12. Red colored residues indicate reduced oxidation rates in the
ACKR3:CXCL12 complex versus CXCL12 alone, gray colored residues are not modified and half-colored circles indicate a modification on one
or both of two adjacent residues. B, Natural log of protection factors derived from experimental protein footprinting data on CXCL12 alone
showed linear correlation with the fractional side chain SASA (0 corresponds to no solvent exposure and 1 corresponds to complete exposure)
calculated from the crystal structure of CXCL12 (PDB: 1A15). C, Mapping of calculated SASA values (from regression plot) for CXCL12 free
state on the crystal structure. D, Mapping of predicted SASA values for CXCL12 in complex with ACKR3 based on interpolation from the linear
correlation in B on the chemokine crystal structure (63).
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studied by pulse-labeling HDX-MS, where the protein unfold-
ing and refolding was performed by addition and dilution of
denaturant (64). Deuteration of the unfolded part of the protein
measured at each folding time was interpreted in the context
of existing crystal structures. A study of chaperone (GroEl/
ES)-assisted protein (TIM-barrel) folding by use of pulse-la-
beling HDX-MS showed acceleration of the protein folding by
the chaperones (65). HDX-MS has also been used for studies
of protein aggregation or fibril formation resulting from im-
proper protein folding (66) and pulse-labeling HDX-MS was
used to monitor refolding of bacteriorhodopsin induced by the
denaturant (67). Quench flow HDX-MS can be used access
millisecond time scale dynamics as seen in cytochrome-c
refolding and other protein dynamics studies (68, 69).
HRF-MS can monitor protein conformational changes from

microseconds to minutes. A recent radiolysis-based HRF-MS
study of YiiP, a proton-coupled Zinc (II) transporter, eluci-
dated the millisecond conformational changes of water ac-
cessibility in the TM5 domain during Zinc (II) binding (70).
Time-resolved synchrotron radiolytic HRF was also employed
to study the dynamic conformational changes in gelsolin upon
Ca (II) binding (71) on the millisecond timescale. In both these
studies, introduction of metal ions to apo-protein via rapid
mixing was initiated, and delay times from a few milliseconds
to a few minutes (after mixing) were introduced prior to expo-
sure of samples by radiolysis.
A combination of HDX-MS, HRF-MS and another structural

technique, small angle X-ray scattering (SAXS), was employed
to investigate the conformational changes of orange carote-
noid protein (OCP) upon photo-activation (72). In addition to
global structural changes revealed by SAXS, local conforma-
tional changes providing a detailed model of the conforma-
tional dynamics were detected by HDX-MS and HRF-MS.
Detection of decrease in solvent accessibility of carontenoid
binding residues in N-terminal domain and increases in C-ter-
minal domain, together with crystal structural data of the OCP
and RCP (red carotenoid protein) revealed a 12 angstrom
translocation of carotenoid pigment within the protein upon
OCP photoactivation including time resolved analysis of the
reaction (73). This work is an excellent example of the
merging of local detailed structural information on dynamics
provided by footprinting with global crystallographic and
SAXS signatures.
Stocks et al. (74) combined stopped-flow mixing and pH

jump to observe unfolding of cytochrome-c, holo-myoglobin,
and S100A11 in the 10 ms range; HRF-MS was achieved by
laser photolysis of peroxide at time points of interest after
mixing. A laser induced temperature jump coupled with laser
photolysis of peroxide (called FPOP or fast footprinting of
proteins) was implemented by Gross et al. in probing folding
dynamics of barstar on the sub-millisecond time scale (75).
Employing sub-millisecond laminar flow mixing coupled with
HRF-MS, investigation of apomyoglobin folding revealed that
sub-millisecond structure formation is primarily driven by hy-

drophobic side chain interaction not backbone hydrogen
bonding (76). Additionally, FPOP HRF-MS was used to differ-
entiate conformational difference of Im7 (native, partially
folded and globally unfolded) providing information of individ-
ual side chains in folding process (77).
New Opportunities—
a. High Resolution Structure Assessment—Achieving the

maximum possible structural resolution for protein footprint-
ing approaches has been an important goal of the field, and
has now been achieved by combinations of several strategies.
We introduce a figure of merit for comparing structural reso-
lution across protein footprinting experiments defined as the
number of probe sites identified and quantified divided by the
total number of residues, expressed as a%. This analytic view
is important as protein footprinting may achieve 100% “cov-
erage,” in that peptides that cover the entire protein sequence
may be detected and analyzed, but sub-peptide level read-
outs may not be available to probe the fine details of the
molecular interactions unless special care is taken. We exam-
ined over 60 manuscripts reporting 75 footprinting results
primarily from the last 10 years to understand the evolving
approaches across many laboratories. supplemental Table S1
summarizes the survey results, including 38 HDX-MS results
and 31 HRF-MS results (16 using laser photolysis of peroxide
and 15 using radiolysis), and seven other covalent label-
ing-MS results (1 acetylation, 3 GEE and 3 carbene labeling).
Overall, using the above figure of merit, HRF-MS achieved
structural resolution of 40% or more in many cases, whereas
HDX-MS in many cases attained 100% structural resolution.
These levels of structural resolution have been achieved in
part through improvements in LC instrumentation (particularly
UPLC) to separate peptides more efficiently and more quickly.
For HRF-MS use of multiple proteases including pepsin has
been effective in enhancing structural resolution whereas for
HDX-MS, the development of approaches that generate over-
lapping peptic fragments has been quite successful (78). All
these methods quantify the peptide intensities at the MS1
level. The “holy grail” of single residue structural resolution
conceptually involves quantification at the MS2 level, through
peptide fragmentation and tandem ion quantification. Signif-
icant progress along these lines has also been achieved by
both HRF-MS and HDX-MS.
Reaching single residue structural resolution via MS2 has

been challenging for HDX-MS owing to hydrogen scrambling
during CID fragmentation. However, in certain cases good
structural resolution was achieved by with minimal scrambling
via ETD fragmentation for �2-microglobin (structural resolu-
tion � 43%) (79) and staphylococcal nuclease (structural res-
olution � 66%) (80). In both cases, careful detuning was used
to avoid scrambling during isolation, which reduced the sen-
sitivity of the approach. Also, charge bias (� � 3�) for pep-
tides that are easily detected in ETD/ECD can result in incom-
plete sequence coverage for some large proteins, limiting
application of the method.
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In HRF-MS application of UPLC methods has resolved
isobaric peptides where the oxidative modification exists on
differing residues. In these cases, a single type of modified
species, eluting at a defined retention time and with a char-
acteristic mass, can be extracted to provide single residue
footprinting data. These UPLC approaches, in combination
with pepsin digestion and denaturation, were applied in
HRF-MS footprinting analysis of �-amyloid via radiolysis
achieving 35% structural resolution (81). Using laser photol-
ysis based HRF-MS, investigators have achieved 40% struc-
tural resolution for thrombin (82). MS2 approaches are more
feasible for HRF-MS, as scrambling is minimal, such quanti-
fication approaches have achieved 43% structural resolution
for calmodulin (83). Quantitation of the labeling in this case
was performed by combined analysis of both MS1 and MS2
intensities of target peptides as modification induced frag-
mentation effects can interfere with the analysis. Footprinting
structural resolution can also be extended by use of alterna-
tive labeling reagents, such as GEE, which labels D and E
residues (84, 85); these can add up to 10% to the structural
resolution depending on the target sequence. Carbene medi-
ated protein footprinting has also been reported as an alter-
native to label residues that are less reactive to hydroxyl
radicals such as Asp, Glu (86). and carbene labeling designed
on a FPOP platform resolved different structural domains of
apo and holo calmodulin (86). A synthesized bespoke di-
azirine -based carbene footprinting with high labeling effi-
ciency were developed to probe the substrate-binding sites of
lysozyme and deubiquitinating protease (87).
b. Measuring Quantitative Structural Parameters with Foot-

printing—Typical footprinting measurements provide a rela-
tive comparison between two states of interest. However,
inferring absolute structure parameters is possible using in-
formation from covalent labeling. For example, measured
HRF-MS oxidation rates can be converted to protection fac-
tors (PF) using the known intrinsic reactivity of amino acid side
chains for hydroxyl radicals (88). These HRF-based PFs show
statistically significant correlations with structural factors such
as solvent accessible surface area and number of local struc-
tural contacts. This was illustrated at the single-residue level
for Ca2�-calmodulin, where the solvent accessible surface
area values side chains was predicted from footprinting data
(83). Fig. 5 shows an example of applying this new approach,
where the crystal structure data of a chemokine (CXCL12)
was compared with the natural log PF values derived from
experimental HRF MS data (Fig. 5A, 5B, and 5C). The result-
ing correlation provided a molecular ruler for inferring the
absolute extent of protection of the chemokine when bound
to its receptor (ACKR3) as shown in Fig. 5D (63). This combi-
nation of high structural resolution and quantitative structure
assessment places HRF-MS in a unique position to assess
structure in absolute versus relative terms, the previous de-
fault approach for footprinting.

c. Footprinting in Cells—A longstanding goal of footprinting
studies is the examination of macromolecular structure inside
living cells. Although this may be out of reach using ex-
changeable reagents such as deuterium, it is a realistic pros-
pect in the case of irreversible labeling. For nucleic acids
footprinting, dimethylsulfate was developed as a footprinting
reagent for detection of protein-DNA interactions in cells (89,
90); these approaches have been considerable improved over
time (91, 92). Radiolytic footprinting has recently been used to
monitor ribosome assembly in bacteria through monitoring of
RNA based protections as a function of assembly (93–95)
providing novel and powerful readouts of complex cellular
structures.
Mass spectrometry to examine protein interactions in cells

is appropriately dominated by progress in the cellular cross-
linking field (96–99); however, such studies do not provide the
level of molecular detail presumed for footprinting, where high
coverage of the molecule is the goal. For protein footprinting
in cells, the challenges are quite substantial and include iden-
tification of reagents that can penetrate cells and modify
protein species efficiently coupled to recovery of sufficient
material for MS detection of multiple labeled sites per protein.
Hydroxyl radicals are a useful reagent for in vivo footprinting,
but the low ambient oxygen levels inside cells reduces oxida-
tion efficacy relative to in vitro studies. Possible approaches
to overcome these limitations have been explored by Espino
et al., who used laser photolysis of peroxide to oxidize pro-
teins inside cells (100). In this case the peroxide was able to
efficiently penetrate cells and native enzymes, like superoxide
dismutase, provided a source of oxygen. Future approaches
will certainly require multidimensional separations, targeted
proteomic analysis and pull-down strategies to enhance cov-
erage and provide functional information on cellular structures
of interest.

CONCLUSION

Protein footprinting has evolved considerably over 30 years
and its growth has occurred hand in hand with the significant
advances in mass spectrometry that have occurred during the
same time. At present, protein footprinting is making unique
contributions to understanding protein structure and dynam-
ics for macromolecular complexes, membrane proteins, and
bio-therapeutics: three of the most challenging and important
areas of research in structural biology today. In particular, the
modest sample requirements and flexibility in use of solution
conditions for conducting footprinting analysis are two of its
greatest advantages. Thus, difficult studies such as high-
resolution structural kinetic analysis of protein dynamics or
examination of the structure of native membrane protein
forms are feasible by these methods. Recent advances in
technique have pushed the structural resolution closer to the
maximum possible, but further increases in signal to noise for
detecting labeled species are needed to address more com-
plex systems routinely.
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