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Background of the Study:
● Synchrotron X-ray Diffraction (SXRD) problems are solved using Machine Learning (ML). 

Uncertainty Quantification (UQ) ensures model reliability and trust.
Motivation of the Study:

● QU is harder feature space increases[1]. Additive covariance kernels help with UQ in 
large feature spaces[2]

Goal of the Study:
● Extend UQ for predicting 𝛽-phase volume fraction in Ti-6Al-4V alloy[3] alloy using 2D 

diffraction images via Gaussian Process Regression (GPR) to higher feature spaces.

Conclusion
● Extended methodology for UQ in ML models with higher feature space and reduced 

computation time
● Additive Exponential Kernels offer shorter computation times with similar UQ capabilities

Future Direction 
● Expand work to handle larger sample sizes and integrate methods for managing both high 

sample sizes and high dimensions
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5. CONCLUSIONS & FUTURE DIRECTION

1. INTRODUCTION

2. EXPERIMENTAL SET UP FOR DATA COLLECTION

3. METHODOLOGY

The experiment involved 
generating time-series SXRD 
diffraction patterns of the sample 
by directing a beam of X-rays 
onto it as it underwent heating 
and cooling.

Experimentation

Data 
Ingestion &

Reconstruction

Modelling with 
comparative 

Kernels & 
Quantifying 

Uncertainties

Out of four experiments conducted, we used data set from 
three of them and a combination of the three data sets

2048 X 2048 An example of reconstructed 2D diffraction image using 5 PC 

Apply PCA as dimension reduction technique for computational efficiency

Used GPR, leveraging its mean and 
covariance functions for probability 
distribution over functional relationships, 
for predictions and UQ.

Model    Train     Train Test
(Kernel)    (Time)  (RMSE)     (RMSE)
Mattern 5/2      1 hr 8 min 21 sec   0.0218         0.0201
Mattern 3/2      1 hr 33 min 16 sec   0.0070         0.0103
Exponential      1 hr 30 min 20 sec   2.8975e-05    0.0195
Gaussian      1 hr 7 min 48 sec   0.0292 0.0293
Power Exp      1 hr 9 min 18 sec   0.0121         0.0120
Add Pow Exp   4 min 57 sec            0.0013            0.0077

● Used six kernels for datasets from experiments I, II, 
III, and their combination, with sample sizes 1056, 
1097, 855, and 3008, respectively

● Performed computation on HPC using 10 cores for 
I, II, III, and 30 cores for the combined dataset

● The plot and table show the results for the 
combined data set 

Original vs. Predicted 𝛽-fraction with 95% prediction interval (22 PCs) for test set of Combined data set. 
Each plot represents the model produced by the respective kernel structure.  

4. RESULTS
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