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Set  Sample size(n) %       Train (Time)         Train (MSPE)         Test (MSPE)
I 1056 95     40 min 30 sec   2.8402e-09 2.5566e-06
II 1097 95  12 min 16 sec   4.4114e-07 4.9103e-06
III 855 95   -   - -
IV 3008 95   -   - -
III 855 90   1 hrs 59 min 15 sec  1.9824e-11 3.7309e-04
IV 3008 90   -   - -
IV 3008 83      6 hrs 26 min 48 sec   1.3631e-07 2.6590e-05
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1. INTRODUCTION
● Background of the Study:

- Machine Learning (ML) Models are increasingly being used 
in Science and Engineering

- A lot of studies on ML models focus on improving predictive 
power of ML models

- Another vast area of consideration is quantifying the 
uncertainties (epistemic(reducible)/aleatory(irreducible)[1]) 
surrounding these prediction
● Motivation of the Study:

- ML models struggles with Out-Of-Distribution (OOD)[2] 
samples, especially those from complex data set.

- Prediction uncertainty increases with increase in opacity of 
ML models 
● Goal of the Study:

- Quantify uncertainties surrounding the prediction of 𝛽-phase 
volume fraction in a Ti-6Al-4V alloy[3] by features of its 2D 
diffraction images using Gaussian Process Regression 
(GPR) and Convolution Neural Networks (CNN)

7. FUTURE DIRECTION
● Extend to incorporate methodologies that facilitate 

uncertainty analysis in ML models with higher feature 
space and sample size and shorter computational time

● Extend to incorporate methodologies that facilitate 
uncertainty analysis in ML models in a federated learning 
environment
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3. RESULTS

2. METHODOLOGY

4. CURRENT CHALLENGES
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5. SOLUTIONS EXPLORED

6. CONCLUSIONS

Approach II (GPR)

PCA is employed here as a 
dimension reduction technique 
reduce computational cost

Performed Uncertainty Quantification for the prediction of 𝛽-phase 
volume fraction using two different approaches 
- For data set II:
- CNN which captured the uncertainty of the optimizer has MSE 

(3.49e-06 (average)) and longer training time (round 6 minutes for 
each training iteration) x 100 = 10 hours 

- GPR has MSE (4.91e-06) and shorter training time (round 12 minutes 
16 seconds) (left): Original vs. Predicted 𝛽-fraction with 95% confidence interval for train set using GPR.  

(right): Length of the 95% confidence interval for train set.

(left): Original vs. Predicted 𝛽-fraction with 95% prediction interval for test set using GPR.  
(right): Original vs. Predicted 𝛽-fraction with corresponding 95% prediction interval for PC1

(left): Architecture of the CNN model trained 100 times. (right): CNN model’s average predicted results. The red line 
represents the ground truth, while the blue plots depict the average predicted results. The MSE in this case is 3.47e-06

CNN model; (left): shows average predicted values (green dots), maximum predicted values (red dots), and minimum 
predicted values (blue dots) for each of the testing set. (right): shows the ground truth (black dots), upper bound of the 
predicted result (red line), and lower bound of the predicted results (blues line) for each data point in the testing set

- Combine PCA with algorithms that allow for parallelization 
(i.e. Vecchia Approximation) to extend GPR  computation 
to higher dimensional space and sample size

- Explore various covariance functions to reduce the 
computational complexity and time taken in the new 
algorithms to be explored

- Increase in sample size 
(n) and feature space (d) 
increases the 
computational cost 
because of:

- Estimation of 
correlation matrix

- Inversion of kernel 
function

- Current methodology does 
not allow for parallelization 
during model estimation 

Data Set Sample Size (n)    # PCs (d)        # PCs (d)
I 1056    5, 7 22

II 1097    5, 7 22

III 855    5, 7, 10 18, 22

IV 3008    5, 7 22

- There are 4 data sets of different 
sample sizes

- The first set of Number of PCs 
are estimable using the current 
methodology of GPR

- The last set of PCs are 
inestimable  using the current 
methodology of GPR

- The underlined number of PCs 
explained 95% of variation in the 
𝛽-phase volume fraction

The Challenge 

● GPR as a non-parametric regression model provides 
probability distribution over functional relationships

● It models the relationships using the mean and kernel 
function

● GPR is used to both make predictions and quantify 
the uncertainty associated with the predictions

Hyper-Parameters Tuning for 
CNN

Quantify the Uncertainty of 
the analysis 

Ingest 2D diffraction 
images Data set

2048 X 2048

Approach I (CNN)

Well-tuned Hyper-parameters include:
● Number of conv. layers
● Number of max-pooling layers
● Node numbers in each layer
● Dropout layer
● Regularization
● Normalization

Best performance model’s structure 
will be chosen to do uncertainty 
quantification. 

● The model is trained 100 times with different 
initial values to observe its final convergence 
results

Model relationship between 
chosen PCs and 𝛽-phase volume 

fraction using GPR

Quantify the Uncertainty of the 
analysis 

Ingest 2D diffraction 
images Data set

2048 X 2048

Reconstruct the data set 
based on determined 

number of PCs

Reconstructed 2D diffraction images

- % represents the percentage of the variations in the diffraction images for each data set explained by the chosen 
number of PCs.

- We leveraged on HPC values for the modelling and the training time recorded were obtained using 10 cores
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