

Case Western Reserve University Scholarly Commons @ Case Western Reserve University

Faculty Scholarship

Spring 4-2-2024

Uncertainty Analysis in Machine Learning Models

Ayorinde E. Olatunde Case Western Reserve University, aeo49@case.edu

Weiqi Yue Case Western Reserve University, wxy215@case.edu

Pawan K. Tripathi Case Western Reserve University, pkt19@case.edu

Roger H. French Case Western Reserve University, rxf131@case.edu

Anirban Mondal Case Western Reserve University, axm912@case.edu

Author(s) ORCID Identifier:

D Ayorinde Emmanuel Olatunde

Follow this and additional works at: https://commons.case.edu/facultyworks

Part of the Data Science Commons, Materials Science and Engineering Commons, and the Statistics and Probability Commons

Recommended Citation

Olatunde, Ayorinde E.; Yue, Weiqi; Tripathi, Pawan K.; French, Roger H.; and Mondal, Anirban, "Uncertainty Analysis in Machine Learning Models" (2024). *Faculty Scholarship*. 346. https://commons.case.edu/facultyworks/346

This Poster is brought to you for free and open access by Scholarly Commons @ Case Western Reserve University. It has been accepted for inclusion in Faculty Scholarship by an authorized administrator of Scholarly Commons @ Case Western Reserve University. For more information, please contact digitalcommons@case.edu.

CWRU authors have made this work freely available. Please tell us how this access has benefited or impacted you!

Materials Data Science for Stockpile Stewardship

COE: US-Department of Energy-NNSA Award

think beyond the possible"

Uncertainty Analysis in Machine Learning Models

Ayorinde E. Olatunde^{1,4}, Weiqi Yue^{3,4}, Pawan K. Tripathi^{2,4}, Roger H. French^{2,3,5}, Anirban Mondal^{1,4,*} ¹Department of Mathematics, Applied Mathematics, and Statistics, Case Western Reserve University, Cleveland, OH, 44106, USA ²Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA ³Department of Computer and Data Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA ⁴Materials Data Science for Stockpile Stewardship: Center of Excellence, Case Western Reserve University, Cleveland, OH, 44106, USA *axm912@case.edu

1. INTRODUCTION

- Background of the Study:
- Machine Learning (ML) Models are increasingly being used in Science and Engineering
- A lot of studies on ML models focus on improving predictive power of ML models - Another vast area of consideration is quantifying the uncertainties (epistemic(reducible)/aleatory(irreducible)^[1]) surrounding these prediction • Motivation of the Study: - ML models struggles with Out-Of-Distribution (OOD)^[2] samples, especially those from complex data set. - Prediction uncertainty increases with increase in opacity of ML models

Layer (type)	Output Shape	Param #		
input_2 (InputLayer)	[(None, 2048, 2048, 1)]	0		
conv2d_5 (Conv2D)	(None, 2046, 2046, 16)	160	0.25	
max_pooling2d_5 (MaxPooling 2D)	g (None, 1023, 1023, 16)	0		
conv2d_6 (Conv2D)	(None, 1021, 1021, 32)	4640	_ 0.20 -	
max_pooling2d_6 (MaxPooling 2D)	(None, 510, 510, 32)	0	ction	

3. RESULTS

4. CURRENT CHALLENGES

Data Set	Sample Size (n) 1056	# PCs (d) 5, <u>7</u>	# PCs (d) 22	
I	1097	<u>5,</u> 7	22	_
	855	5, 7, 10	<u>18</u> , 22	

The Challenge

Increase in sample size (n) and feature space (d)

- Goal of the Study:
- Quantify uncertainties surrounding the prediction of β -phase volume fraction in a Ti-6Al-4V alloy^[3] by features of its 2D diffraction images using Gaussian Process Regression (GPR) and Convolution Neural Networks (CNN)

2. METHODOLOGY

(left): Architecture of the CNN model trained 100 times. (right): CNN model's average predicted results. The red line represents the ground truth, while the blue plots depict the average predicted results. The MSE in this case is 3.47e-06

CNN model; (left): shows average predicted values (green dots), maximum predicted values (red dots), and mi predicted values (blue dots) for each of the testing set. (right): shows the ground truth (black dots), upper bound of the predicted result (red line), and lower bound of the predicted results (blues line) for each data point in the testing set

5.7

- There are 4 data sets of different sample sizes
- The first set of Number of PCs are estimable using the current methodology of GPR
- The last set of PCs are inestimable using the current methodology of GPR
- The underlined number of PCs explained 95% of variation in the β -phase volume fraction

increases the computational cost because of:

- Estimation of correlation matrix
- Inversion of kernel function
- Current methodology does not allow for parallelization during model estimation

5. SOLUTIONS EXPLORED

- Combine PCA with algorithms that allow for parallelization (i.e. Vecchia Approximation) to extend GPR computation to higher dimensional space and sample size
- Explore various covariance functions to reduce the computational complexity and time taken in the new algorithms to be explored

6. CONCLUSIONS

Performed Uncertainty Quantification for the prediction of β -phase volume fraction using two different approaches

- For data set II:
- CNN which captured the uncertainty of the optimizer has MSE (3.49e-06 (average)) and longer training time (round 6 minutes for each training iteration) x 100 = 10 hours
- GPR has MSE (4.91e-06) and shorter training time (round 12 minutes) 16 seconds)

7. FUTURE DIRECTION

- Extend to incorporate methodologies that facilitate uncertainty analysis in ML models with higher feature space and sample size and shorter computational time
- Extend to incorporate methodologies that facilitate uncertainty analysis in ML models in a federated learning environment

8. REFERENCES

[1] Der Kiureghian, A. & Ditlevsen, O. Aleatory or epistemic? Does it matter? Struct. Safety 31, 105-112 (2009)

[2] Nemani, V. et al.: Uncertainty quantification in machine learning for engineering design and health prognostics: A tutorial. Mech. Syst. Signal Process. 205, 110796 (2023) [3] Brown, D. W., et al. Evolution of the microstructure of laser powder bed fusion Ti-6Al-4V during post-build heat treatment. *Metallurgical and Materials Transactions* A 52 (2021):

GPR is used to both make predictions and quantify the uncertainty associated with the predictions

Let $S = \{(x^{(i)}, y^{(i)})\}_{i=1}^{m}$ be a training set, the GPR model is given as $y^{(i)} = h(x^{(i)}) + e^{(i)}, \quad i = 1, ..., m$ where $h(\cdot) \sim \mathcal{GP}(m(\cdot), k(\cdot, \cdot))$ and $\begin{bmatrix} k(x_1, x_1) & \cdots & k(x_1, x_m) \end{bmatrix}$ $\left[m(x_1) \right]$ $(m(\cdot), k(\cdot, \cdot))$ $m(x_m) \left[k(x_m, x_1) \cdots k(x_m, x_m) \right]$ $k(x_i,x_j)=\sigma^2\exp\left(egin{array}{c} rac{-|x_i-x_j|^2}{eta} \end{array}
ight)$, $\epsilon\sim \mathcal{N}(0,\delta^2)$

- % represents the percentage of the variations in the diffraction images for each data set explained by the chosen number of PCs.
- We leveraged on HPC values for the modelling and the training time recorded were obtained using 10 cores

This material is based upon research in the **Materials Data Science for Stockpile** Stewardship Center of Excellence (MDS3-COE), and supported by the U.S. Department of Energy's National Nuclear Security Administration under Award Number(s) **DE-NA0004104**. This work made use of the High Performance Computing Resource in the Core Facility for Advanced Research Computing at Case Western

Reserve University.