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Advances in neural engineering have brought about a number of implantable devices
for improved brain stimulation and recording. Unfortunately, many of these micro-
implants have not been adopted due to issues of signal loss, deterioration, and
host response to the device. While glial scar characterization is critical to better
understand the mechanisms that affect device functionality or tissue viability, analysis
is frequently hindered by immunohistochemical tissue processing methods that result
in device shattering and tissue tearing artifacts. Devices are commonly removed
prior to sectioning, which can itself disturb the quality of the study. In this methods
implementation study, we use the label free, optical sectioning method of second
harmonic generation (SHG) to examine brain slices of various implanted intracortical
electrodes and demonstrate collagen fiber distribution not found in normal brain tissue.
SHG can easily be used in conjunction with multiphoton microscopy to allow direct
intrinsic visualization of collagen-containing glial scars on the surface of cortically
implanted electrode probes without imposing the physical strain of tissue sectioning
methods required for other high resolution light microscopy modalities. Identification and
future measurements of these collagen fibers may be useful in predicting host immune
response and device signal fidelity.

Keywords: second harmonic generation, collagen, glial scar, imaging, implantable device

INTRODUCTION

Multiphoton microscopy is now a widely adopted brain imaging method, and can be used
to monitor in vivo neural activity with single spine resolution (Knott et al., 2006; Svoboda
and Yasuda, 2006; Kerr and Denk, 2008; Holtmaat et al., 2009; Ozbay et al., 2018). As a
non-linear modality, multiphoton offers spatial confinement to the focal region in scattering
brain tissue and allows deep, high-resolution optical sectioning of live brain or thick sections
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in vitro (Kobat et al., 2011). Multiphoton microscopy can
generate both fluorescence and second harmonic generation
(SHG) as simultaneous contrast mechanisms, which provide
complementary information regarding tissue structure and
function, as well as orientation, polarization, and symmetry
properties of chiral proteins (Zoumi et al., 2002; Belluscio, 2005;
Provenzano et al., 2010; Chen et al., 2012). SHG generates
its intrinsic contrast from the interaction of light with non-
centrosymmetric structures such as collagen I, collagen II, and
myosin (Roth and Freund, 1979; Plotnikov et al., 2006; Chen
et al., 2012). SHG is a coherent optical process during which two
photons combine and emit a single photon with visible light. As
such, SHG imaging offers many of the same benefits of traditional
multiphoton microscopy. SHG can be used for high resolution,
deep imaging of tissues, allowing a depth penetration of up to
∼500 µm. The triple-helix structure of fibrillar collagen permits
visualization up to 0.2–0.3 µm resolution with little to no tissue
damage, and does not require the use of fluorescent labels, stains,
or genetically modified species (Williams et al., 2005; Li et al.,
2011; Chen et al., 2012; Mostaço-Guidolin et al., 2017). While
the current study was performed in ex vivo brain slices, SHG can
also be used in vivo to observe changes over time (Zoumi et al.,
2002; Dilipkumar et al., 2019). Though the phenomenon of SHG
was first demonstrated in biological tissues over three decades
ago, and is easily observed with the appropriate filter, it remains
an underutilized modality by those already using multiphoton
microscopy to image brain-implanted devices in vivo and in
vitro (Freund and Deutsch, 1986; Chen et al., 2012). One factor
might be that the most common application for SHG imaging is
examining fibrillar collagen and the role of collagen in the brain
is still emerging (Shearer and Fawcett, 2001; Heck et al., 2003).

Extracellular matrix (ECM) molecules in the unwounded
brain occupy up to 20% of adult brain volume and are
characterized by long, linear polysaccharide glycosaminoglycans
such as chondroitin sulfate and hyaluronan, while fibrillar
collagen is notably absent (Syková and Nicholson, 2008; Miyata
and Kitagawa, 2017). Brain ECM exists in diffuse forms found
throughout the neuropil and perisynaptic spaces and condensed
forms called perineuronal nets (PNNs) that form lattice-like
structures around subpopulations of neurons (Miyata and
Kitagawa, 2017). While glycosaminoglycans in brain ECM were
previously considered non-specific physical barriers to neural
regeneration, recent studies have proposed that ECM molecules
actively regulate neuronal function through specific interactions
with their binding partners (Miyata and Kitagawa, 2017). Though
non-fibrillar types of collagen have been observed in healthy
brain tissue and have been shown to be necessary for proper
function (Seppänen et al., 2007; Hubert et al., 2009; Su et al., 2010)
the brain does not typically show the same patterns or abundance
of fibrillar collagen (Rauch, 2007; Fox, 2008). However, early
experiments suggest the existence of fibroblasts and fibrillar
collagens of types I, III, IV, and V within wound areas in the brain
(Berry et al., 1983; Maxwell et al., 1984, 1990).

When a penetrating lesion is made in the adult rat cerebral
hemisphere, the initial hemorrhagic reaction is followed by
invasion of blood-borne macrophages and fibroblasts from the
adjacent connective tissue into the lesion lumen, resulting in

collagen fibril and basement membrane formation (Berry et al.,
1983; Maxwell et al., 1984). The first responders after electrode
insertion are microglia, the macrophage lineage cells of the brain,
which begin their activation within minutes of injury and show
increased density within 24 h (Davalos et al., 2005; Nimmerjahn
et al., 2005; Kozai et al., 2015). Reactive astrocytes peak within
the first week following injury, and within approximately three
to 4 weeks form a compact, collagen-containing sheath around
any foreign bodies that remain (Biran et al., 2005). Glial
scar formation around chronically implanted electrodes is a
reactive, cellular process with rapidly changing cell population
dynamics that include perivascular-derived fibroblasts, pericytes,
ependymal cells, and phagocytic macrophages (Adams and Gallo,
2018). Immunohistological labeling of various populations of
activated fibroblasts and astrocytes surrounding the lesion core
requires histological sectioning, a process that frequently causes
artifactual damage to electrodes and surrounding tissue under
analysis. While others have reported that the fibrotic scar is
replete with collagen (Shearer and Fawcett, 2001), the advantages
it offers as an endogenous marker of glial scar formation
imageable by SHG is largely unrecognized even by those already
characterizing rodent brain tissue around chronically implanted
electrodes by multiphoton microscopy.

Established histological methods for identifying collagen
in tissue include immunohistochemical staining for collagen
types I and II as well as non-specific anionic dye procedures
such as Van Gieson’s stain, Masson’s Trichrome, and Sirius
Red. Anionic dyes stain collagen by reacting acid groups with
the basic groups of collagen, and standard method protocols
specify tissue section thicknesses of 5 µm in paraffin sections
to permit dye penetration into the tissue. In Sirius Red
staining, the elongated axis of dye molecules are attached
parallel to the collagen fiber, resulting in enhanced birefringency
and specificity when combined with polarized light detection
methods. A traditional transmission pathology microscope fitted
with linear polarizers or more specialized instrumentation
such as the liquid crystal based PolScope perform optimally
with standard histological tissue section thicknesses between
5 and 10 µm, so that light can effectively pass through
the specimen for phase-shift contribution to contrast in
the final image.

Ischemia of a resected specimen before fixation for
immunohistochemistry can result in degradation of protein,
RNA, and DNA as well as activation of tissue enzymes and
autolysis, and small variations in ischemic time can be a crucial
factor affecting IHC results. Thick tissue sections can produce
higher background signals as can frozen sections, and soluble
antigen may be diffused out during the process of IHC prior to
fixation. Immunohistochemical protocols for the anticollagens I
and II antibodies specify 30–40 µm thick frozen tissue sections,
and instruct cutting thinner sections for greater permeation of
antibody. These methods typically result in electrode shattering
or tearing and separation of the electrode from the tissue
for industry standard silicon-based NeuroNexis probes with
thicknesses of 15 µm or greater.

None of the methods for imaging collagen described above
offer the depth (100s of microns) and non-invasiveness of
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SHG to image implanted electrode surfaces in histological
thick sections 300–500 µm as described in this experiment.
SHG is highly specific to the non-centrosymmetric structure
of fibrillar collagen, offers high resolution, good signal-to-noise
ratio, and ability to work non-destructively on stained and
unstained tissues. Unlike fluorescence, SHG suffers no inherent
photobleaching or toxicity and does not require exogenous
labels. Unlike polarization microscopy, SHG provides intrinsic
confocality and deep sectioning in complex tissues.

Previous antibody-based studies have shown collagen I
deposition around penetrating neural implants (Kim et al., 2004).
However, label-free, high resolution SHG based imaging of
the collagenic scar around implanted neural electrodes has not
been demonstrated. In this method validation study, multiple
penetrating electrodes types harvested at different times post-
implantation were imaged post-mortem by SHG to confirm the
presence of collagen fiber deposition around the device. We
demonstrate collagen fibrils associated with implanted tissue not
found in normal brain tissue. Label-free measures of collagen
fibers around intact implanted electrodes may be useful in
predicting host immune response to various electrode device
designs and may also predict signal fidelity of the device.

MATERIALS AND METHODS

Ex vivo SHG images of brain slices in the backward direction
were collected through a Nikon 20× water-dipping objective (1.0
NA) at 890 nm excitation. A dichroic cube filter set (Chroma
Technologies, Bellow Falls, VT, United States) containing
two band-pass emission filters SHG (445/40 nm) and flavin
adenine dinucleotide (FAD) (592/100 nm) were used in an
imaging system consisting of a multialkali photomultiplier
detector (Hamamatsu, Shizuoka, Japan) on a Bruker Ultima
IV (Bruker FM, Middleton, WI, United States) multiphoton
microscope equipped with an Insight ultrafast laser (Spectra
Physics, Santa Clara, CA, United States). A motorized
stage was used to automatically collect images at tiled x/y
locations throughout the brain sections. Tiled images were
stitched together using FIJI’s grid/collection stitching plugin
(Preibisch et al., 2009).

The power at the back aperture of the objective was ∼7 mW.
For 890 nm, 1.0NA, at these powers the lateral resolution is
380 nm and axial resolution ∼4 um. Imaging parameters were
optimized by starting with low Pockels cell values using a range
check LUT to display intensity scale for an image to ensure
optimal saturation to prevent photobleaching and phototoxicity.
The images from the Ultima are digitized to 12 bits, which means
that the input channel data intensity scale ranges from 0 (no
signal) to 4095 (saturated signal). In a black and white LUT, values
of 0 are usually represented as pure black and values of 4095 are
usually represented as pure white. Since the computer only has
256 gray levels, a function or LUT is used to define the display
intensity scale. If these 256 display gray levels are used to display
the full range of 4096 intensity levels then each display gray level
is equal to 16 PMT data intensity levels. Photomultiplier tube
values on multialkali PMTs were 650–700.

To help validate the SHG based observations, antibody
staining on a horizontal electrode was done. Primary
antibody staining was done with 1:750 Chicken anti-
GFAP (EMD Millipore, AB5541) and 1:300 Rabbit anti-
Collagen I (Novus Biologicals, NB600-408). Secondary
antibodies used were 1:500 Goat Anti-Rabbit IgG H&L
(FITC) (Abcam, AB6717) and 1:1000 Alexa-fluor-633 goat
anti-chicken (Invitrogen). The samples were mounted
with Vectashield mounting medium with DAPI (Vector
Laboratories, Burlingame, CA, United States) and imaged on
a Leica DMi8 fluorescence microscope (Leica Microsystems,
Wetzlar, Germany) with a 10x 0.4 NA air immersion dry
objective (Leica Microsystems, Wetzlar, Germany) and
the following filter cubes CFP (Ex. 426–446, Em. 435–
485), GFP (Ex. 450–490, Em. 500–550) and Y3/RFP (Ex.
532–558, Em. 570–640). The fluorescence images were
registered with the SHG images from the same slide
with fine-structures registration approach (BUNWARPJ,
FIJII). A mask from SHG was used to see if all the pixels
are co-registered.

Off-stoichiometry thiol-enes-epoxy (OSTE+) polymer probes
were fabricated in the laboratory of Marting Bengtsson at
Lund University, implanted in mice and harvested as previously
described by Lee et al. (2017) following Institutional Animal
Care and Usage Committee (IACUC) guidelines at the University
of Florida. OSTE+ Hard, OSTE+ Soft, polyimide, and silicon
electrodes had dimensions of 250 µm wide and 3 mm long
with a tapered tip of approximately 18◦ in angle. Thicknesses
were: 21.3 ± 1.0 µm (polyimide), 23.5 ± 2.1 µm (OSTE+Hard),
and 22.4 ± 2.1 µm (OSTE+Soft) (mean ± standard deviation,
N = 15). Probes were cortically implanted in mice and harvested
at 4 and 6 weeks respectively. Mouse brains were lightly
embedded with optimum cutting temperature (OCT) compound
(Sakura Finetek, Netherlands) and sliced into 25 µm horizontal
sections with the retained probes. More common varieties of
NeuroNexus silicon probes from implanted rat brains were
imaged at various time points as previously described (Woolley
et al., 2013). Intact single shank NeuroNexus probes (249 µm
width, 15 µm thickness, N = 3; 132 µm width, 15 µm thickness,
N = 2), single shank bare silicon probes (132 µm width,
15 µm thickness, N = 3), and quadruple shank bare silicon
probes (132 µm width, 15 µm thickness, N = 2) were collected
within coronal slices of rat brain harvested between 53 and
177 days prior to sacrifice using the device capture technique
described by Woolley et al. (2013) and sectioned between 350 and
450 µm.

RESULTS

We report the direct observation of high-resolution collagen
fibers encapsulating intact, indwelling silicon NeuroNexus neural
devices in thickly sectioned (350–450 µm) rat coronal slices
(N = 10 for all varieties of NeuroNexus probes) that contrasts
with the absence of non-fibrillar collagen in the unwounded
brain (Figures 1, 2). In Figure 2, abundant collagen fibers within
a substantial glial scar are shown with SHG imaging (890 nm
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excitation 445/40 nm emission) of a NeuroNexus silicon device,
implanted for 8 weeks, sectioned at 400 µm, and captured
within a coronal slice of rat brain tissue. Collagen fibers on
the surface of the silicon device are shown in Panels A and
B. Panel C magnifies a 500 µm × 200 µm segment of the
image, clearly showing fibers encircling the device as well as
extending along the length of the device. When the depth of
the collagen within the imaged z-stack is encoded as color
(shallow z-depth, surface of tissue slice = white; deep z-depth,

FIGURE 1 | Healthy brain tissue is largely devoid of fibrillar collagen. Second
Harmonic Generation (SHG) imaging of mouse brain tissue shows virtually no
fibrillar collagen (green, 890 nm excitation 445/40 nm emission) within the
parenchyma. Collagen fibers can be seen surrounding the cortex and within
and between ventricles. Multiphoton induced autofluorescence (red, 890 nm
excitation, 592/100 nm emission, likely FAD) was recorded to observe gross
anatomical features of the tissue. Scale bar = 1 mm.

interior of tissue slice = indigo), circumferential fibers can be
observed both above and below longitudinal fibers. Collagen
fibers that match the geometry of implanted silicon NeuroNexus
devices (time of implantation ranged from 53 to 177 days) can
be observed with SHG imaging independent of probe size and
shank number (Figure 3). Imaging 25 µm histological sections of
mouse brain tissue harvested at 4 and 8-week timepoints proved
more difficult due to the artifacts induced by tissue processing
required by the criteria of that study (Lee et al., 2017). In these

FIGURE 3 | Collagen fibers observed with SHG imaging match the geometry
of implanted neural devices independent of probe size/type in silicon
NeuroNexus probes. Although the manifestation of fibrillar collagen varied,
fibers consistently conformed to the implant shape, encompassing both the
(A) shank and the (B) tip of the device. Electrodes were implanted between
53 and 177 days prior to sacrifice. Scale bar = 50 um.

FIGURE 2 | Collagen fibers encapsulate indwelling neural devices. Abundant collagen fibers are shown with SHG imaging (890 nm excitation 445/40 nm emission)
of a 132 um NeuroNexus silicon device, implanted for 56 days, captured within a coronal slice of rat brain tissue. (A,B) Quantify and visualize, respectively, that
collagen fibers are only observed on the surface of the device, not in the surrounding parenchyma. (C) Magnifies a 500 um × 200 um segment of the image, clearly
showing fibers encircling the device as well as extending along the length of the device. When the depth of the collagen within the imaged z-stack is encoded as
color (shallow z-depth, surface of tissue slice = white; deep z-depth, interior of tissue slice = indigo), circumferential fibers can be observed both above below
longitudinal fibers.

Frontiers in Neuroscience | www.frontiersin.org 4 July 2020 | Volume 14 | Article 95

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00095 July 4, 2020 Time: 17:45 # 5

Esquibel et al. SHG Imaging of Implanted Electrodes

samples, the softer electrodes were physically cross-sectioned by
the 25 µm sectioning processing method. Though collagen fibers
were still observable, the degree of apparent collagen deposition
was decreased in samples processed in this manner (Figure 4).
When tissue from animals implanted with silicon probes was
cross-sectioned at 25 µm, the probes shattered and pulled away
from the tissue, disallowing observation of collagen fibers. Given
the fragile nature of the tissue and electrodes it was challenging
to do any sort of antibody validation on most of these samples,
few survived the process. However, we were able to take one of
the horizontal electrodes and stain it for collagen I and GFAP
(Figure 5). We used a mask from SHG to see if all the pixels
are co-registered. We found 88% of the SHG pixels belong to the
collagen 1 antibody staining.

DISCUSSION

Understanding glial scar formation is fundamental to improving
biocompatibility of chronic implanted electrodes. Scar borders
are formed primarily by newly proliferated astrocytes and glia
that surround and recruit inflammatory and fibrotic cells into

discrete areas that are separated from adjacent tissue containing
viable neurons (Wanner et al., 2013). Our observations of fibrillar
collagen on the surface and perimeter of chronically implanted
electrode probes in rat and mouse, correspond with the glial scar
and suggest a correlative signal that may be used to assess and
quantify wounding in the brain caused by chronically implanted
electrodes. This signal can be evaluated in both in vivo and
thickly sectioned post-mortem coronal sections, without the
addition of extrinsic stains or fluorescence. This study offers a
new method to assess and potentially quantify scarring around
a chronically implanted electrode. While fibrillar collagen has
not been previously reported on the surface of electrodes in
conjunction with glial scar formation, it appears to coincide with
glial scar location.

Glial scars provide a biochemical and mechanical barrier to
neuronal generation and result in tissue softening in the cortex
after injury (Moeendarbary et al., 2017). Blood brain barrier
(BBB) leakage, astrogliosis, and tissue remodeling correlate with a
reduction in silicon microelectrode array recording performance,
increases in microelectrode impedance and loss of neuronal
recording attributed to the encapsulating brain tissue response
(Nolta et al., 2015). Changes to the tissue microenvironment

FIGURE 4 | Horizontal slices through implanted probes show collagen deposition. SHG imaging (green, 890 nm excitation 445/40 nm emission) shows collagen
fibers around neural probes, independent of the indwelling device material. Multiple slices through the same polyimide device show that the collagen fibers are most
abundant close to the cortical surface (Ai) but are still observable in deeper cortical regions (Aii) Collagen fibers were also observed on and around neural probes
made of OSTE soft (B) and OSTE hard (C) materials. Autofluorescence from the implanted device is shown in gray (890 nm excitation, both 445/40 and 592/100 nm
emission). Scale bar = 50 microns.

FIGURE 5 | Immunohistochemistry of Collagen I overlaid with GFAP of the astrocytic glial scar in chronic horizontal slices. We re-registered the two files with
fine-structures registration (BUNWARPJ, FIJI). We used a mask from SHG to see if all the pixels are co-registered. We found 88% of the SHG pixels belong to the
collagen 1 antibody staining. Scale bar = 200 microns.
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surrounding the device can dramatically impact electrochemical
and electrophysiological signal sensitivity and stability over time
(Williams et al., 1999). Glial cells form tight junctions with
each other to create a glial sheath, which in combination with
collagen along the length of the electrode can form a diffusion
barrier that limits transmission of ions as well as overflow of
neurotransmitters through the extracellular space (Roitbak and
Syková, 1999). In general, this increase in impedance is observed
over the first 2 weeks following insertion, before stabilizing
(Williams et al., 1999; Kozai et al., 2014). Furthermore, neuronal
cell death and degeneration of neurites can occur within 150 µm
of the device over the first 4 weeks (Biran et al., 2005; Kozai et al.,
2014, 2015). The long-term utility of neural devices depends on
the severity of this tissue reaction, with chronically implanted
devices becoming less reliable over time (Williams et al., 1999;
Polikov et al., 2005; Barrese et al., 2013; Sommakia et al., 2014).

Research also suggests that a mechanical mismatch between
the softer brain tissue and industry standard silicon electrodes
may induce cellular sheath formation, particularly near the
tip and edges of the probe where the highest elevated local
strains occur (Lee et al., 2017). Strain–stress caused by neural
implant rigidity and the brain’s micromotion may exacerbate
the foreign body response (FBR). Flexible nanocomposite probes
(12 MPa) induce significantly less neuroinflammatory response
than standard silicon probes and polyvinyl acetate (PVAc)-coated
silicon probes (Harris et al., 2011; Nguyen et al., 2014) and flexible
penetrating devices have been shown to have comparatively
long-term electrophysiological characteristics in the CNS. Lee
et al. (2017) observed a significant reduction in the fluorescence
intensity of biomarkers for activated microglia/macrophages
and BBB leakiness around three types of soft polymer probes
compared to silicon probes at 4 and 8 weeks post-implantation,
suggesting that the mechanical compliance of neural probes can
mediate the degree of FBR.

Reactive astrocytes are believed to be the main contributors of
the molecular cues that drive glial scar formation in the wounded
brain (Ridet et al., 1997; Heck et al., 2003). When astrocytic
cell lines were developed with a range of abilities to promote
or inhibit neurite outgrowth, the most inhibitory of these cell
lines, Neu7, was correlated with fibrillar collagen production
(Heck et al., 2003). The glial scar may impede electrophysiology
measurements by directly altering the impedance or ionic
microenvironment, or by simply increasing the physical distance
between the neurons and the recording contacts. Identifying and
modulating potentially inhibitory molecules or physical barriers
in the ECM will be critical to developing interventions that allow
axons to regenerate beyond the glial scar (Silver and Miller, 2004;
Fitch and Silver, 2008; Cregg et al., 2014).

SHG can penetrate 100s of microns in brain tissues, making it
an appropriate technique for imaging without risking shattering
the sample or tearing the tissue during sectioning as occurred
in the brain samples harvested in mice for Lee et al. (2017).
The most commonly used laser for SHG imaging offers average
performance for multiphoton imaging in the brain, the Nd:YVO4
(532 nm; 5–18 W) pumped Ti:sapphire oscillator, that has
tuning ranges of ∼700–1,000 nm, repetition rates of ∼80 MHz,
average powers of 1–2 W and pulse widths of ∼100 fs, which

correspond to a bandwidth of about 10 nm full width at half-
maximum (FWHM) (Chen et al., 2012). SHG is not a resonant
process, and the choice of excitation wavelength in terms of
signal intensity is thus not crucial (Chen et al., 2012). 900-nm
excitation is a good compromise between imaging depth, viability
and Ti:sapphire performance (Chen et al., 2012). A short wave
pass (SWP) dichroic mirror following the laser is necessary for
background-free SHG detection, as residual pump (532 nm) can
co-propagate with Ti:sapphire through the entire microscope
path to the detectors.

SHG can be used to visualize collagen to improve our
understanding of how ECM components impact and participate
in the foreign body response to implanted neural devices.
While this study demonstrated that collagen coincides with
glial scar location, a true comparison of the FBR in electrode
material will require normalized distribution of tissue processing
methods, electrode types, and rodent species. We demonstrate
high-resolution, in-depth imaging of fibrillar collagen on the
surface of the implants coinciding with glial scar location in
intact electrodes in thickly sectioned samples (350–450 µm)
without artifacts typically induced by histological sectioning.
Future studies should investigate whether the material type
or composition of the electrode affects the collagen response.
This imaging tool could enable rapid evaluation of new probe
designs and therapies aimed at reducing the formation of the
glial scar to ultimately improve the chronic performance of
implanted neural devices.
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