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a b s t r a c t

Cutting edge developments in engineering of tissues, implants and devices allow for guidance and
control of specific physiological structure-function relationships. Yet the engineering of functionally
appropriate human-device interfaces represents an intractable challenge in the field. This leading
opinion review outlines a set of current approaches as well as hurdles to design of interfaces that
modulate transfer of information, i.a. forces, electrical potentials, chemical gradients and haptotactic
paths, between endogenous and engineered body parts or tissues. The compendium is designed to
bridge across currently separated disciplines by highlighting specific commonalities between seemingly
disparate systems, e.g. musculoskeletal and nervous systems. We focus on specific examples from our
own laboratories, demonstrating that the seemingly disparate musculoskeletal and nervous systems
share common paradigms which can be harnessed to inspire innovative interface design solutions.
Functional barrier interfaces that control molecular and biophysical traffic between tissue compartments
of joints are addressed in an example of the knee. Furthermore, we describe the engineering of gradients
for interfaces between endogenous and engineered tissues as well as between electrodes that physically
and electrochemically couple the nervous and musculoskeletal systems. Finally, to promote translation of
newly developed technologies into products, protocols, and treatments that benefit the patients who
need them most, regulatory and technical challenges and opportunities are addressed on hand from an
example of an implant cum delivery device that can be used to heal soft and hard tissues, from brain to
bone.
Crown Copyright © 2016 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Analogous to the survival of trees within the ecosystem of the
Amazon rainforest, cellular survival in the complex ecosystem of
the human tissues, organs, and organismal systems depends not

only on patent transport pathways but also on the efficient
transport of chemical, electrical, and biophysical information across
interfaces bounding tissue compartments. Cutting edge rapid
throughput imaging technologies, in combination with geo-
navigational approaches to analyzing massive imaging data sets
from human tissues, are enabling an epidemiological approach to
understanding human health in context of organ and tissues'
cellular inhabitants' health (Fig. 1) [1e4]. Equally critical, the
maintenance of functional barrier properties at tissue compart-
ment interfaces allows for control of the respective systems' steady
state and dynamic equilibrium properties, where breaches at
boundaries (interfaces) risk destabilizing those properties [2].
Coupled computational modeling and multimodal imaging ap-
proaches are enabling unprecedented understanding of
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information transfer between and across different tissue com-
partments making up the complex biosystem of the human body
[4,6,7]. While a number of studies have described the importance of
the blood supply and vascularization for engineering tissues and
next generation implants, engineering of interfaces represents a
less explored yet equally important facet for success of human-
device interfaces over time, providing the impetus for this review.

So much about the basic physiology of our own ecosystem re-
mains unknown and needs to be addressed in order to engineer
interfaces using top-down and bottom-up approaches. Indeed this
is a grand challenge for development of next generation implants
that integrate seamlessly between the device and the human
ecosystem, between the organs and tissues comprising our bodies,
and between these tissues and their cellular inhabitants. For
example, every nonarticular surface of our bone is bounded by a
soft tissue interface called the periosteum. Much like the blood-
brain-barrier, the periosteum exhibits functional barrier proper-
ties and serves as a gatekeeper for transfer of information via all
nonarticular outer surfaces of bone. Furthermore, the periosteum
exhibits a remarkable capacity to respond to external stimuli to
modulate its molecular permeability [8] as well as its mechanical
properties [9], during and after trauma, the third leading cause of
mortality in adults across age groups worldwide [10]. Stimuli-
adaptive and responsive properties are defined as smart proper-
ties [8,11e14]. Periosteum's smart permeability properties emerge
from spatiotemporal dynamics of molecular scale cell adhesion
protein complexes called tight junctions [11,12]. Its smart me-
chanical properties emerge from spatial distribution andmultiscale
architectures of structural proteins including collagen and elastin
making up the soft tissue sleeve and connecting it to bone, tendon
and muscle [15,16]. Such smart properties provide inspiration for
emulation when engineering functional tissue interfaces.

In that sense, engineering at the interface, and ultimately, the
engineering of functional interfaces, itself serves as a portal to
innovation. The challenge is to address multiscale mechano-,
chemo- and electrophysiology from the organ to the molecular
length scale and back again. Cutting edge developments in engi-
neering of tissues, implants and devices allow for guidance and
control of specific structure-function relationships. Yet the engi-
neering of functionally appropriate interfaces represents a
currently intractable challenge in the field.

Here, leaders in the development of mechanically, electrically,
chemically, and biologically functional interfaces, use examples
from their respective labs to illustrate hurdles and innovative so-
lutions for the design of interfaces that modulate transfer of in-
formation between endogenous and engineered body parts or
tissues. In this context, information is used as a general term for the
transfer of i.a. forces or stresses, electrical potentials, chemical
gradients and haptotactic paths. As noted in the following sections,
myriad “weakest links” exist between engineered systems and
endogenous tissues, which themselves exhibit profoundly dispa-
rate mechanical, chemical, and electrical properties. In parallel,
cutting edge technological approaches are described to overcome
current hurdles. “Weakest links” within organs are outlined in
Functional Barrier Interfaces in the Knee. Those between
endogenous and engineered tissues are described conceptually in
Gradients to Link Disparate Tissues, and those between electrodes
that physically and electrochemically couple the nervous and
musculoskeletal systems are captured in detail in Engineering
Mechanically Functional Interfaces in the Brain: Overcoming
Strain Gradients. Finally, the challenges of moving so-called
combination products smoothly through the regulatory agencies
as well as traversing the “valley of death” on the commercialization
path toward clinical implementation serve as the weakest links in
translating engineered interface innovations to commercially

viable clinical devices, as described based on an example class of
interface products (surgical membranes) in Translation and Bridge
to the Future.

2. Functional barrier interfaces in the knee

Human physiology provides exquisite examples of the impor-
tance of functional barriers. In particular, the substructures
comprising an anatomical joint link the structure-function re-
lationships enabling mobility of the individual to those underlying
the exquisite flexibility and resilience of the joint, to those of the
tissues making up the joint and the cells that inhabit its respective
tissues. The currently intractable challenge of connecting between
these length scales, and over the time scale of the growing and then
aging individual, in health and disease, may be solved in the near
future through coupling of cutting edge, seamless imagingmethods
and computational models of virtual physiological systems (Fig. 2)
[3,6,7,17,18]. Such approaches are key to understanding co-
nundrums related to biomaterials, pharmaceuticals and multiscale
physiology. For example, how do chondrocytes in avascular carti-
lage receive their nutrition? Do popular, over the counter oral
supplements such as chondroitin sulphate reach the cells in the
cartilage of the knee when ingested orally by aging adults who
suffer from knee pain associated with osteoarthritis? If I want to
design a material that couples between vascular bone tissue and
avascular cartilage, how can I harness movement to do facilitate
transport? How do I couple the musculoskeletal and nervous sys-
tems which have such different mechanical, electrical and chemical
properties? The list of questions is infinite but an understanding of
complex biosystems will pave the path toward greater under-
standing and discovery.

New high resolution episcopic blockface imaging methods
[19,20] in combination with multibeam scanning electron micro-
scopy [3,4], in vivo computed tomography and high resolution
magnetic resonance imaging methods [19,20] enable elucidation of
structure and function from nanometers to centimeters, in a lon-
gitudinal manner (over time). Going forward, in combination with
coupled, multiscale and multiphysics computational models (in
silico models), it will be possible to predict complex biosystems
behavior and to prioritize future experiments based on parametric
sweeps that determine system variables exerting dominant influ-
ence on outcome measures of interest [7]. While the integration of
biophysical and biochemical cues is perhaps most obvious in tis-
sues of the musculoskeletal or circulatory systems with their
obvious motility and pumping functions, every tissue of the human
body exhibits i.a. molecular sieving, electrophoretic and osmotic
pressure gradients.

As an example, expanding to address osteoarthritis, the largest
cause of disability in the aging population, pairing of in vivo and in
silico models not only provides an integrative approach to me-
chanical modeling of interfaces, but also traverses numerous length
and time scales [1,2,17,18]. Coupledmodels enable integrative study
of all interfaces, including biological and non-biological, in device
design and evaluation while bridging length and time scales.
Cutting-edge imaging modalities enable seamless study of complex
systems from a single cell to a whole joint and allow for charac-
terization of interface barrier properties and their degradationwith
age and disease (Fig. 2). Episcopic and magnetic resonance imaging
lend themselves for the study of organismal systems, and will pave
the way for virtual physiome models including cellular to organ
scale detail, with high spatial and temporal resolution [3,21,22].
This allows one to account for the vascular system as an interfacing
organ between the musculoskeletal and other organ systems in the
body. Of particular note, it also enables inclusion of the lymphatic
system which drains and recycles interstitial fluid that bathes the
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Fig. 1. Geonavigational approaches to understanding human physiology in context of inhabitant cell population health. Similar to the Amazon, the complex biosystem of the
human body comprises diverse ecosystems such as bone and brain. Living ecosystem inhabitants, from trees to human cells, adhere similarly to the laws of physics and present
similar challenges when one considers engineering their replacement and/or interface with medical devices, implants and materials. A,B. Like individual trees (B3), osteocytes (A3)
are non-motile cells that depend on patent transport pathways for their basic metabolic needs and molecular communication. (A2). Notably, the relative length scale ratio of
osteocyte:femur (A3:A1) is similar to that of a single tree:whole Amazon basin (B3:B2), circa 1:1 � 106. Used with permission [2]. C. Connectivity of tissues' cellular inhabitants
provides an important measure of cellular communication efficiency and tissue patency, e.g. in bone (osteocytes) and brain (neurons). New rapid throughput imaging modalities
such as multibeam electron microscopy allow for organ to tissue to cellular length scale assessment of cell and tissue health, in bone (C1, from a hip replacement patient, obtained
with Institutional Review Board approval of the Cleveland Clinic, Dr. Ulf Knothe) and brain (C2, from the mouse brain with IACUC approval of Harvard University, Professor Jeff
Lichtman) Used with permission. In combination with geospatial navigation methods such as Google Maps API, it is now possible to navigate and interact with these high resolution
maps of human tissue to study epidemiology of cell populations within individual patients (an example is available to explore at the link provided in mechbio.org) [4]. These enable
R&D teams to 'see the forest for the trees' while also seeing the 'trees for the forest'.
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cells inhabiting the tissue but perhaps more importantly provides a
conduit for the immune system traffic.

Ultimately, these insights, enabled through rapid developments
in imaging and modeling technologies, will lead to better design
and prescription of medical devices as well as physiotherapy pro-
tocols to optimize human-device integration and performance,
ultimately enhancing human health. For, once the natural system is
understood, “mechanically active” device designs can be tested and
optimized in silico to harness physiological forces to facilitate
transport of molecules and cells as well as those biophysical and
biochemical signals that modulate system equilibrium [13,23].
Similarly, physical therapy protocols can be developed to enhance
transport and/or healing of mechanically active devices [7,24]. As
such, this approach exhibits numerous potential clinical applica-
tions in arenas including surgery (device design and surgical
technique), physical therapy (rehabilitation and preventative pro-
tocols), and pharmaceuticals (better understanding the transport
properties between interfaces will allow for the development,
design and delivery of drugs that are either preventative or
restorative). In sum, an integrative approach to mechanical
modeling and device design has the opportunity to improve clinical
interventions, and ultimately patient outcomes.

3. Gradients to link disparate tissues

Interestingly, just as functional barrier properties are key for
certain physiological functions, the lack of clear boundaries is just
as important for other functions. For example, abrupt changes in
mechanical stiffness result in stress concentrations, which are the
'weakest link' of the system under dynamic loads. Nature “over-
comes this weakest link” by using gradients in mechanical prop-
erties, avoiding stress concentrations, from a mechanical

perspective, and providing a myriad of physico-chemical signals to
cells, the living inhabitants of tissues on the other hand.

Indeed, nature is replete with gradients, defined as the variation
in any quantity from one location to another, e.g., temperature,
pressure, mechanical properties, material composition, concentra-
tions of cytokines, etc. Following the theme of nature's engineering
paradigms applied to the engineering of tissues [2,7,17,25e27],
gradients are crucial to de novo tissue generation in embryogenesis
as well as to tissue regeneration in wound healing [7,17,26,28]. As
such, gradient engineering provides a novel approach to engineer
tissue interfaces [29e37] that better mimic natural interfaces, e.g.,
bone - cartilage, muscle - tendon, andebone interfaces, which
themselves exhibit gradual transitions in cellular, extracellular
matrix and mechanical structures and functions from one tissue to
the next (Figs. 3,4) [16e18,33,34]. Numerous recent studies employ
a range of gradients in their tissue engineering design approach,
including gradients in peptides or receptor ligands, growth factor
release or immobilization, and even surface roughness [35e43].

Among the numerous methods to incorporate gradients into
tissue engineering, the use of microspheres provides a unique ca-
pacity to control material properties at 3D microscale resolution in
clinically relevant biomaterials [44e49]. For example, micro-
spheres can be combined into mechanically robust, macroporous
biomaterials capable of releasing opposing gradients of signals [50]
and/or creating gradients in material composition and thus me-
chanical stiffness [50]. Microspheres can be sintered together using
heat, dense phase CO2, or mild solvents, avoiding the need for a
separate carrier material such as a hydrogel [51e53]. Microsphere-
based approaches provide a distinct advantage, enabling encapsu-
lation of ‘rawmaterials’ for tissue regeneration; these materials can
serve as both building blocks and signaling molecules [54,55]. In
proof-of-concept studies, microsphere-based scaffolds with

Fig. 2. The necessity to account for gradients as well as limiting boundaries in chemical and physical properties to understand endogenous tissue and organ architectures
and to engineer replacement tissue and tissue-implant interfaces. (A)e(D). During development, patterning of the body's template is directed by a combination of chemical and
physical cues, where emergent concentration gradients and patterns guide emergent structure and function. Tissue patterning reflects gene transcription which provides molecular
markers of incipient extracellular matrix generation or, in short, in situ tissue genesis by stem cells. Many regenerative medicine and tissue engineering strategies seek to reca-
pitulate developmental processes [2]. Used with permission. (E) In prenatal and postnatal tissues, blockface, episcopic imaging allows visualization of structure-function re-
lationships from the cellular to the organ length scale. Here a single image from serial cuts (in the cutting plane) reveals the peripheral vascularization through to the saggital plane
of the knee joint of the Guinea pig, including the femur (above) and tibia (below). Mass transport can be visualized between and across tissue compartments in three dimensions, as
the serial sections are taken throughout the depth of the sample block and can be reconstructed in three dimensions. Transport of 10 kDa (green) and 70 kDa (red) tracers show
remarkable compartmentalization by the respective tissues of the knee joint, despite being injected as a single mixed bolus to the heart [18]. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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gradients in material composition and/or growth factor release
have been shown to be effective in regenerating osteochondral
defects in rabbit knees [56,57] and mandibular condyles [58].
However, future studies in large animal models and clinical trials
will be crucial for refining the technology in terms of suitable
degradation profiles and material composition.

With the current explosion of 3D printing [25,36,41,59] and
rapid manufacturing methods including electrospinning [60e63]
and computer controlled weaving [23,64], the number of ways to
engineer and build gradients increases every day. A key to the
translation of such approaches will be the feasibility of imple-
mentation in a clinical context, such as the surgical operating room,
while addressing standard commercialization considerations such
as regulatory approval, competitive pricing, insurance reimburse-
ment, hospital profit, and ease of manufacturing and distribution
(cf. Translation and Bridge to the Future for more detail). By
taking business as well as clinical considerations into account when
implementing engineering approaches, next generation device and
implant designers will be able to leverage gradients' innate power
to make a lasting impact on the regeneration of functional tissue
interfaces.

4. Engineering mechanically functional interfaces in the
brain: overcoming strain gradients

Matching of mechanical stiffness is a recurrent challenge in the
seemingly disparate biosystems of the musculoskeletal and ner-
vous systems, e.g. at interfaces including hip prostheses anchored
in bone and electrodes inserted into the brain (Fig. 3). Stress
shielding around orthopaedic implants has been implicated in their
failure over time due to maladaptation of apposing tissue which is
offloaded by the stiffer implant. In contrast, use of stiff implants in
the brain causes damage during insertion and maladaptation over
time.

The engineering of mechanically functional interfaces with the
brain is a multifaceted problem not unlike engineering interfaces in
the musculoskeletal system, where transfer of electrical informa-
tion plays a dominant role yet overcoming strain gradients presents
a currently unsolved challenge. Several classes of neural interfaces
have been developed to transmit information to and from the
nervous system. In the brain, electrical signals recorded from
neurons by intracortical microelectrodes have been used to better
understand the function of the brain in health [65e67] and disease,

Fig. 3. Osteocytes of bone exhibit dendritic connectivity similar to neurons of the brain. In both tissues, cellular network connectivity is indicative of health status of the tissue
and organ. (A) Distinct patterns in loss of connectivity are observable in bone health and disease. Scale bar ~60 mm. Used with permission [5]. Inset: A mismatch in mechanical
stiffness between a hip implant and anchoring bone results in stress shielding, where the stiffer implant offloads the bone and local bone loss results as an adaptive response
(arrow). This particular x-ray exhibits the importance of interfaces on patient health in a number of ways, including the destruction of the structural interfaces of the endogenous
joint (*osteoarthritis so advanced that the joint exhibits 'bone on bone' articulation), osteolysis emanating from the interface of the hip replacement implant with the immune
system and local environment (e.g. due to movement and resulting particulate debris), and tissue edema (soft tissue, lower right quadrant) originating from imbalances at the
interface of the lymphatic and circulatory systems, with likely immune system involvement. Image courtesy of Ulf Knothe, M.D., D.Sc. of the Cleveland Clinic. (B) In general, a
mismatch in implant and tissue stiffness results in mismatch in tissue strain and displacement under load, e.g. during insertion of a microelectrode needle into brain tissue. This
mismatch may result in local trauma, inflammation and altered cell organization and viability in the brain as well as changes in overlying bone of the cranium, due to stress
shielding. Similar to bone, cells of the rat cerebral cortex show local changes in inter-cellular architecture (B1, B2), in healthy and injured tissue approximately one month after
surgery involving a cranial screw. In lower magnification, double-labeled images of rat cerebral cortex sections, neuron structures (Green; beta-3-tubulin) appear normal with clear
cortical layers, and organized microglia immune cells (Red; IBA1). Injured cortex (B4) exhibits very distorted layers and inflammation below the screw. Scale bars: 25 mm (B1,B2),
100 mm (B3, B4). Images courtesy of Andrew Woolley, Ph.D. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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as well as by human patients to communicate with computers and
to control robotic limbs [68e72]. Other clinical applications are
being explored, with expectations remaining high.

A current hurdle to the field is the inconsistency in signal quality
and the length of time that useful signals can be recorded [73,74].
Inconsistencies in recording capabilities have been tied to the sta-
bility of the materials used to create the electrodes [75]. However,
the consensus view of the scientific community is that the in-
flammatory response to the microelectrode contributes, at least in
part, to recording reliability [73,76,77].

Traditional microelectrodes have been composed of extremely
stiff materials such as metals or silicon. The high stiffness has
facilitated microelectrode implantation into the cortical tissue [78].
However, a number of groups have hypothesized that increased
stiffness may adversely impact neuronal tissue through a variety of
mechanisms [79e87].

Finite element models predict micromotion of the brain relative
to a stiff microelectrode induces strain fields on the surrounding
tissue, with highest strain found closest to the surface of the brain
[82,88,89]. Such strain profiles are validated by the non-uniform,
depth-related gradient tissue response to the microelectrodes
[90]. Similarly, comparing the inflammatory response of identical
devices that are either tethered to the skull, or un-tethered and
free-floating within the cortical tissue, shows that tethering in-
duces a more robust inflammatory response, leading to a more
significant loss to local neuronal cell populations [91]. As truly
wireless systems are yet to be fully developed, current microelec-
trodes are typically tethered to the skull to enable connection with

external hardware for signal transmission.
One feasible approach, the utilization of lower modulus poly-

mers to create intracortical microelectrodes with decreased strain
profiles, creates a new set of challenges. For example, to avoid
buckling during insertion, the forces that the implant must over-
come during insertion (insertion force) must be lower than the
critical loading force for a given electrode design. Otherwise, the
implant will either fail to insert, implant at an unwanted trajectory,
and/or break [81,92]. Several groups have investigated making the
implants larger to enable implantations. Such methods range from
increasing the cross-sectional area of the implants [93], to applying
a 5e10 mm thick silicon layer to the polymer to prevent buckling
during insertion. However, increasing device size or adding a non-
compliant backing reduces device compliance and increases strain
induced on the surrounding tissue. In addition, increasing device
size exacerbates the initial iatrogenic injury (refer to [94] for a
recent comprehensive review on this topic).

Alternatively, in situ softening materials have been investigated
as substrates for intracortical microelectrodes [39,79,84,89,95e97]
to facilitate ease of insertion into the brain tissue while softening
significantly upon implantation to more closely match the me-
chanical properties of the brain. The first realization of such ma-
terials for intracortical microelectrodes was based on the design
and architecture of the sea cucumber (Fig. 4) [96]. The sea cu-
cumber is a sessile sand sifter that crawls along the ocean floor.
When threatened by a predator, the animal can rapidly and
reversibly crosslink collagen fibers within its skin to become stiffer
and unpalatable [39,97e99]. The defense mechanism was

Fig. 4. Engineering mechanical and chemical gradients at interfaces. Polymer nanocomposite materials have been developed to mimic the design and architecture of the squid
beak. The original design of the material was developed for intended applications in both neural electrodes and orthopaedic implants to integrate the implanted devices across
mechanically desperate tissue-device interfaces, preventing stress shielding. (A) A split beak of the Humboldt Squid Dosidicus gigas after removal from the buccal mass, showing the
relation of the wing to the rostrum. (B) A high-magnification scanning electron image of the chitin fiber network in the rostrum after alkaline peroxidation of the beak [33]. From the
work of Zok, Waite and coworkers, reprinted with permission from AAAS. (C) Schematic representation of water-enhanced mechanical gradient nanocomposite in the squid beak
biomodel and the proposed synthetic biomimic. (A)e(C) appeared together in the original manuscript by Rowan and colleagues [39], and is reprinted here with permission from ACS.
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mimicked in which the general design consisted of a soft polymer
matrix that is reinforced with rigid nanofibers to create polymer
nanocomposites [96]. The sea cucumber-inspired nanocomposites
are based on a poly(vinyl acetate) (PVAc) matrix reinforced with
rigid cellulose nanocrystals (CNCs) [100]. When dry, these nano-
composites are in a rigid state (E' ¼ 5.1 GPa), due to the glassy
matrix and the rigid percolating network of the CNCs. Upon im-
plantation into the brain, the nanocomposite undergoes a phase
transition and softens (E' ¼ 12 MPa) as water plasticizes the matrix
and disassembles the CNC network.

Unlike neat polymer controls, or earlier polymer based
microelectrode designs, dry implants comprising the sea cucum-
ber inspired nanocomposite can readily be inserted through the
pia mater into the cerebral cortex of a rat without the need for
assistive devices [92]. Further, ex vivo studies confirm rapid soft-
ening of the initially stiff microscale nanocomposites upon
insertion into the rodent brain [92,97]. A comprehensive evalua-
tion of the neuroinflammatory response to PVAc/CNC nano-
composite implants through a 16 week implantation period
demonstrated nearly complete attenuation of inflammatory cell
activation, and the absence of any appreciable neuron loss sur-
rounding PVAc/CNC nanocomposites compared to chemically-
matched PVAc-coated MI-style microelectrodes at chronic time
points [89]. However, at earlier time points, the chemically
matched stiffer controls and the compliant nanocomposite based
devices show few physiological differences. The nanocomposite
based device can also be used as a vehicle for short-term anti-
inflammatory release, to synergistically target complementary
neuroinflammatory mechanisms [101] and device stiffness/
compliance may be tunable to optimize electrode recording
quality of functional microelectrodes [84,85].

Interestingly, recent studies confirm that the sea cucumber
inspired compliant microelectrodes reduce micromotion and tis-
sue strain within 30 min of implantation [86]. Yet, a temporal
mismatch persists between the bulk tissue and micromotion
induced strain on brain tissue by microelectrodes, and the acute
inflammatory response. Therefore, these results suggest that the
bulk tissue effects of device stiffness may play a more dominant
role at more chronic time points due to alterations in the matu-
ration of the glial scar [89]. For example, chemotactically-driven
pathways may dominate early time points following device
implantation.

Mechanosensitive pathways exert a temporally correlative ef-
fect in this process [101]. Strain-specific inflammatory pathways
are up-regulated early after implantation of stiff, non-dynamic
implants. Yet, months after implantation, the effect of mechano-
sensitive pathways is abrogated, presumably due to scar matura-
tion. Alternatively, in vitro and in vivo evidence indicates that
substrate stiffness may influence neuronal and glial cell types
through a variety of mechanisms [77,102,103].

An array of variables resulting from both biotic as well as abiotic
factors likely result in poor recording quality and microelectrode
failure. However, the complexity and interconnectivity of such
failure modes makes improving microelectrode performance a
challenging problem. While a number of failure modes have been
identified, a more in-depth mechanistic understanding is still
needed. Despite the challenges and questions that remain, the
exciting possibilities are encouraging. Stimulating advances in the
fields of material science, neural engineering and bioengineering
should be fostered to create dynamic multi-disciplinary teams, in
order to accumulate the skills and knowledge to design, test, and
integrate the next generation intracortical microelectrodes, capable
of long-term clinical deployment for neuro-rehabilitative applica-
tions, and beyond.

5. Translation and bridge to the future

Finally, to promote translation of newfound knowledge and
newly developed technologies into products, protocols, and treat-
ments that benefit the patients who need them most, regulatory
and technical challenges are addressed. Given the multifaceted
approaches necessary to engineer human-device interfaces, it is
essential to understand the product development and regulatory
challenges associated with these “combination” devices,
“comprising two or more regulated components, i.e., drug/device,
biologic/device, drug/biologic, or drug/device/biologic, that are
physically, chemically, or otherwise combined or mixed and pro-
duced as a single entity” (FDA definition) [104]. These challenges
are placed in context using an example of an engineered interface
implant cum drug delivery device inspired by the smart properties
of the periosteum (Fig. 5).

The engineering of interfaces using top-down and bottom-up
engineering approaches poses a grand challenge for the success
of next generation implants that integrate seamlessly between the
device and the human ecosystem (and/or its organs and tissues).
For example, much like the blood-brain-barrier, the periosteum
exhibits functional barrier properties and serves as a gatekeeper for
transfer of information accrues all nonarticular outer surfaces of
bone. Furthermore, periosteum's smart properties, including the
capacity to modulate its molecular permeability [8], as well as its
mechanical properties [9], and mechanical stiffness in response to
impact loading associated with trauma, emerge from its molecular
level architecture (organization in space and time). Periosteum's
'smart' permeability properties emerge from spatiotemporal
dynamics of tight junctions that link cells into tissue sheets with
stimuli-responsive (e.g. mechanical, chemical, electrical) perme-
ability [8,11,12]. Similarly, shape shifts in its structural proteins
intrinsic to the tissue's mechanical state imbue periosteum with
‘smart’ mechanical properties. These 'smart' mechanical properties
emerge from both the spatial distribution as well as the multiscale
architectures of structural proteins including collagen and elastin
[11,12]. The resulting capacity of periosteum's circa 500 micron soft
tissue sheath to confer an inexplicable boost in bone's fracture
strength under traumatic loads has inspired a new class of
mechanoactive materials and implants cum delivery devices. While
providing inspiration for emulation when engineering and
commercializing human-device interfaces, the creation of mate-
rials and systems with such smart properties is not a trivial
endeavor and requires the integration and use of different tech-
nologies to break through current hurdles.

As an example looking forward in the RDC pathway, an implant
cum drug delivery device inspired by the smart properties of the
periosteum was developed and tested preclinically by a surgeon -
biomedical engineer team (both authors on this manuscript), with
recent issue of a patent, bringing it from the preclinical (yellow) to
the clinical space (blue), and hence just entering 'the valley' (Fig. 5).
While the time from patent filing (7 March 2011) to patent issue (17
March 2015) comprised almost exactly four years, the development
process took much longer (Fig. 5:1,2). First a novel one stage bone
transport procedure was developed to harness the regenerative
capacity of the biological tissue periosteum [106]. This was fol-
lowed by a series of preclinical studies (2004e2008) using peri-
osteum in situ to bridge critical sized defects in an ovine femur
model [107] and in limited human patients [108]. Thereafter, in the
bioengineering labs, a periosteum substitute was developed and
tested (2008e2010), in an analogous preclinical ovine model
(Fig. 5:3). The biomaterial designed to substitute for the biological
tissue replicated key features of the periosteum, including vectorial
delivery of biologics (including cells and biological factors such as
growth factors) and pharmaceuticals; vectorial refers to the control
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of the direction and concentration of factors released by the
implant cum delivery device) [109]. While this product might be
considered a delivery device alone, its mode of action includes use
for delivery of pharmaceuticals as well as biologics, placing the
device squarely within the combination product category [104,110].

An understanding of the regulatory challenges is key to
commercialization of this product. Furthermore, decisions must be
made whether to license the technology and/or to spin off a com-
pany to commercialize the product. Licensing the technology
ideally speeds its commercialization by experts in the commercial
space; licensing has a further advantage of separating the com-
mercial and R&D teams, which may help to avoid conflicts of in-
terest. Starting a company provides unique opportunities for
stewardship and advocacy, given the scientific and clinical guid-
ance of the inventor team; conflicts of interest inherent to start ups
or spin offs must not only be disclosed but also a management plan
for these conflicts of interest should be put into place. Such trans-
parency leverages the power of R&D in university labs to create and
commercialize new technologies. This has the potential to stimu-
late economies and create jobs for university graduates, while
strengthening bridges between university and industry sectors and

increasing industry relevance of a university education.
The path from IP protection to FDA approval and product launch

can take just as long as the developmental pathway. By example,
looking backward in the pathway from the perspective of a number
of related and successfully commercialized products, FDA approval
of new product developments can span well beyond two decades
(Table 1).

In this case, where the first four products would not be
considered combination devices, the fifth product and its prede-
cessor were among the first combination products approved by the
FDA. Of note, specific lots of the BioMend® product were recalled in
2013 due to “deviations” in themanufacturing process that resulted
in unacceptably high levels of pyrogens in the product; pyrogens
are fever inducing substances typically produced by bacteria,
molds, viruses and yeast [117].

6. Conclusions

Using examples from the disparate musculoskeletal and ner-
vous systems to exhibit common paradigms between tissues, this
review addresses the currently intractable challenge of engineering

Fig. 5. The opportunities and hurdles to clinical translation of scientific research and development are depicted in the schematic for the various stages of RDC (y axis): Research (R),
Development (D) and Commercialization (C), in the preclinical, clinical and commercial space (x axis). The weakest link between engineering interfaces and translating novel
interfaces to clinical care is often referred to dysphemistically as the 'valley of death', defined traditionally as the lowpoint in the cumulative profit/loss curve over time, used with
permission after [105]. Few data exist to compare quantitatively the percentage of successful patent filings (successful filings/total filings) to the percentage of successful products
(successful products/total products) launched. Although IP protection is an important aspect of product success and is thus considered a portal to the valley, consideration of
'Technology transfer' hurdles effectively widens the valley well into the clinical space.
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functionally appropriate human-device interfaces. The field is at a
watershed, where transdisciplinary approaches will yield tremen-
dous opportunities for the design of interfaces that modulate the
transfer of physiologically relevant information between endoge-
nous and engineered body parts or tissues. While research grant
agencies have traditionally encouraged science and its translation
to focus on single tissues and molecules, new approaches suggest
that single tissue centric or single signaling pathway specific ap-
proaches may limit opportunities for successful translation. For, as
reviewed here, it is the interfaces between tissues and between
endogenous and exogenous tissue replacements and/or devices
that present the weakest link to success. In this way, these in-
terfaces also have the greatest potential to be game changers and
enablers if successfully addressed!

How then does one go about understanding interfaces between
tissues in a more comprehensive and insightful manner? As with
other breakthroughs in the field, technology is leading the way
forward. Seamless multiscale imaging technologies are enabling
R&D teams to tie events at different time and length scales in un-
precedented ways [3,15,18]. In addition to opening our eyes to the
nanoscopic through mesoscopic worlds of cells and the tissues and
organs they inhabit, cutting edge multiscale imaging technologies
are also enabling the development and validation of seamless
multiscale virtual models that will enable efficient predictive
studies that will profoundly increase the efficiency of scientific
discovery. Together, paired imaging and virtual modeling methods
will create a portal to new technologies and innovative approaches
to engineer and translate emergent behavior, where emergence
refers to properties or patterns arising from the putting together of
simpler elements which themselves do not exhibit the properties
or pattern [3,4,12].

Furthermore, new rapid manufacturing methods enable not
only the production of complex medical grade products but also
products that will be more affordable and reimbursable than the
current state of the art. These will have a profound effect on the
workforce and economies, as the need for workers skilled in
technology and science will increase; combined with the shift to
more automated production methods, economies with higher ed-
ucation levels may benefit from new opportunities in the
manufacturing sector. The increasing integration of “biologics”,
including donor and patients' own tissues, cells and factors, in
medical devices will increase the need for quality control in
manufacturing as well as the need for development of novel pro-
tocols and technologies to enable not only sterile production but
also storage and transport modalities.

Finally, just as interfaces are gatekeepers for communication
across boundaries between tissues and organs, R&D, Tech Transfer
and Commercialization teams need to create interfaces that facili-
tate communication across diverse boundaries, e.g. disciplinary,
cultural and fiscal, to enable rapid translation and commercializa-
tion of novel products. Inclusion of translational and commercial-
ization expertise already at the very early conceptualization of
ideas by R&D teams will not only speed the rate of translation but
may also determine whether a product successfully traverses the
'valley of death' on the path to commercialization. Similarly, envi-
sioning of reimbursement codes at very early stages of commer-
cialization may appear overly calculated at early stages of
innovation; however, the imperative for such considerations are
regularly underscored in the current market environment.

For, at the intersection of tissue engineering and next generation
implants, the engineering and translation of tissue - implant in-
terfaces is not only challenging but also crucial to ensure the effi-
cient transfer of e.g. mechanical, chemical, and electrical
information between tissues and their replacements. Across tissue
types, from bone to brain, there are remarkable similarities in the
need for efficient information flow between neighboring dynamic
systems; the bridge or port that allows for optimisation of flowmay
relate to efficient navigation of cells or to mitigation of stress
concentrations as well as stress shielding. By engineering spatial
gradients in material properties and interactions as well as through
harnessing of natural human movements and functions over time,
delivery of molecular and cellular agents can be fine-tuned to
facilitate healing and maximize performance. The current grand
challenge to the field is to combine fundamental approaches from
different disciplines to develop and translate paradigms more
closely mimicking nature's robust and elegant engineering para-
digms. Finally, cognizance of and proactive strategic approaches to
intellectual property and clinical trial management are critical early
factors in successful later translation of engineered interfaces,
which themselves are de facto combination products. The future is
great for engineering tissue-implant interfaces; bridging across
currently separated disciplines while embracing rapid
manufacturing technologies and commercialization approaches
conducive to combination product development paves a trans-
lational path that will greatly enhance patient care and quality of
life.
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Table 1
Case study of FDA approval for related surgical membrane products, which are types of tissue interfaces.

FDA
approval

FDA pathway Product Reference

5 May
1993

510K K932176 104315, Biosil medical
grade silicone sheeting

Bioplexus™ Medical Grade Silicone Sheeting for surgical reconstruction of tissues [111]

22 August
1995

FDA's 510K pathway as a Class II device BioMend® adsorbable collagen membranes for guided tissue repair of the dental gingiva (developed from
bovine achilles tendon by Integra LifeSciences Holding Corporation

[112]

5 July
2001

FDA 510K NeuraGen™ Nerve Guide adsorbable collagen tubes for the repair of severed peripheral nerves in the
extremities; reported by Integra as the “fifth of a series of absorbable medical devices [including BioMend®]
… in development for over 15 years [http://investor.integra-ls.com/releasedetail.cfm?releaseid¼235097]

[113]

FDA 510K TutoDent® dental membrane and CopiOs™ perichondriummembrane, both of whichwere approved by the
FDA through 510K as “substantially equivalent to the TutoPatch membrane with respect to materials”
(bovine perichondrium processed using the TutoPlast® procedure) and “substantially equivalent to the
Collagen Dental Membrane, Bio-Gide Resorbable Membrane and BioMend Extend predicate devices with
respect to design and function”

[114]

9 March
2012

GINTUIT™ for oral soft tissue regeneration; Allogeneic cultured keratinocytes and fibroblasts in bovine
collagen, a cell and gene therapy product manufactured by Organogenesis Inc., [http://www.fda.gov/
BiologicsBloodVaccines/CellularGeneTherapyProducts/ApprovedProducts/ucm295465.htm)] as well as its
sister product Apligraf® for chronic venous leg ulcers and diabetic foot ulcers, which originated in 1998.

[115,116]
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