Document Type

Article

Publication Date

5-24-2022

DOI

10.1088/2516-1083/ac6f3f

Publication Title

Progress in Energy

Volume

4

Issue

3

College/School

Case School of Engineering

Department/Center

Materials Science & Engineering

Abstract

In the last decade and longer, photovoltaic module manufacturers have experienced a rapidly growing market along with a dramatic decrease in module prices. Such cost pressures have resulted in a drive to develop and implement new module designs, which either increase performance and/or lifetime of the modules or decrease the cost to produce them. In this paper, the main motivations and benefits but also challenges for material innovations will be discussed. Many of these innovations include the use of new and novel materials in place of more conventional materials or designs. As a result, modules are being produced and sold without a long-term understanding about the performance and reliability of these new materials. This has led to unexpected new failure mechanisms occurring few years after deployment, such as potential induced degradation or backsheet cracking. None of these failure modes have been detected after the back then common single stress tests. New accelerated test approaches are based on a combination or sequence of multiple stressors that better reflect outdoor conditions. That allows for identification of new degradation modes linked to new module materials or module designs.

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.