Document Type

Article

Publication Date

12-1-2020

DOI

10.1371/journal.pone.0240461

Publication Title

PLOS ONE

Volume

15

Issue

12

College/School

Case School of Engineering

Department/Center

Materials Science & Engineering

Grant

DE-AR-0000668

Funder

U.S. Department of Energy, Advanced Research Projects Agency, Energy (ARPA-E)

Abstract

Commercial buildings account for one third of the total electricity consumption in the United States and a significant amount of this energy is wasted. Therefore, there is a need for “virtual” energy audits, to identify energy inefficiencies and their associated savings opportunities using methods that can be non-intrusive and automated for application to large populations of buildings. Here we demonstrate virtual energy audits applied to large populations of buildings’ time-series smart-meter data using a systematic approach and a fully automated Building Energy Analytics (BEA) Pipeline that unifies, cleans, stores and analyzes building energy datasets in a non-relational data warehouse for efficient insights and results. This BEA pipeline is based on a custom compute job scheduler for a high performance computing cluster to enable parallel processing of Slurm jobs. Within the analytics pipeline, we introduced a data qualification tool that enhances data quality by fixing common errors, while also detecting abnormalities in a building’s daily operation using hierarchical clustering. We analyze the HVAC scheduling of a population of 816 buildings, using this analytics pipeline, as part of a cross-sectional study. With our approach, this sample of 816 buildings is improved in data quality and is efficiently analyzed in 34 minutes, which is 85 times faster than the time taken by a sequential processing. The analytical results for the HVAC operational hours of these buildings show that among 10 building use types, food sales buildings with 17.75 hours of daily HVAC cooling operation are decent targets for HVAC savings. Overall, this analytics pipeline enables the identification of statistically significant results from population based studies of large numbers of building energy time-series datasets with robust results. These types of BEA studies can explore numerous factors impacting building energy efficiency and virtual building energy audits. This approach enables a new generation of data-driven buildings energy analysis at scale.

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Comments

The data underlying the results presented in the study are available from https://osf.io/unm43/, DOI: 10.17605/OSF.IO/UNM43.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.