Document Type
Article
Publication Date
2-15-2019
Abstract
Photolytic and hydrolytic degradation of poly(ethylene-terephthalate) (PET) polymers with different stabilizers were performed under multiple accelerated weathering exposures and changes in the polymers were monitored by various evaluation techniques. Yellowing was caused by photolytic degradation and haze formation was induced by combined effects of photolytic and hydrolytic degradation. The formation of light absorbing chromophores and bleaching of the UV stabilizer additive were recorded through optical spectroscopy. Chain scission and crystallization were found to be common mechanisms under both photolytic and hydrolytic conditions, based on the infrared absorption of the carbonyl (C = O) band and the trans ethylene glycol unit, respectively. The degradation mechanisms determined from these evaluations were then used to construct a set of degradation pathway network models using the network structural equation modeling (netSEM) approach. This method captured the temporal evolution of degradation by assessing statistically significant relationships between applied stressors, mechanistic variables, and performance level responses. Quantitative pathway equations provided the contributions from mechanistic variables to the response changes.
Publication Title
PLOS ONE
Volume
14
Issue
2
Funder
3M Company Corporate Research Analytical Laboratory
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Recommended Citation
Fagerholm, Cara L.; French, Roger H.; and Bruckman, Laura S., "Temporal Evolution and Pathway Models of Poly(Ethylene-Terephthalate) Degradation under Multi-Factor Accelerated Weathering Exposures" (2019). Faculty Scholarship. 28.
https://commons.case.edu/facultyworks/28