Document Type

Article

Publication Date

8-5-2019

DOI

10.1109/JPHOTOV.2019.2928477

Publication Title

IEEE Journal of Photovoltaics

First Page

1405

Last Page

1412

Volume

9

Issue

5

College/School

Case School of Engineering

College/School

College of Arts & Sciences

Department/Center

Materials Science & Engineering

Abstract

In research on photovoltaic (PV) device degradation, current-voltage (I-V ) datasets carry a large amount of information in addition to the maximum power point. Performance parameters such as short-circuit current, open-circuit voltage, shunt resistance, series resistance, and fill factor are essential for diagnosing the performance and degradation of solar cells and modules. To enable the scaling of I-V studies to millions of I-V curves, we have developed a data-driven method to extract I-V curve parameters and distributed this method as an open-source package in R. In contrast with the traditional practice of fitting the diode equation to I-V curves individually, which requires solving a transcendental equation, this data-driven method can be applied to large volumes of I-V data in a short time. Our data-driven feature extraction technique is tested on I-V curves generated with the single-diode model and applied to I-V curves with different data point densities collected from three different sources. This method has a high repeatability for extracting I-V features, without requiring knowledge of the device or expected parameters to be input by the researcher. We also demonstrate how this method can be applied to large datasets and accommodates nonstandard I-V curves including those showing artifacts of connection problems or shading where bypass diode activation produces multiple “steps.” These features together make the data-driven I-V feature extraction method ideal for evaluating time-series I-V data and analyzing power degradation mechanisms in PV modules through cross comparisons of the extracted parameters.

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.