Document Type

Article

Publication Date

5-2-2020

Manuscript Version

vor

Abstract

Background: Shortages of personal protective equipment (PPE) including N95 respirators are an urgent concern in the setting of the global COVID-19 pandemic. Decontamination of PPE could be useful to maintain adequate supplies, but there is uncertainty regarding the efficacy of decontamination technologies. Methods: A modification of the American Society for Testing and Materials standard quantitative carrier disk test method (ASTM E-2197-11) was used to examine the effectiveness of 3 methods, including ultraviolet-C (UV-C) light, a high-level disinfection cabinet that generates aerosolized peracetic acid and hydrogen peroxide, and dry heat at 70°C for 30 minutes. We assessed the decontamination of 3 commercial N95 respirators inoculated with methicillin-resistant Staphylococcus aureus (MRSA) and bacteriophages MS2 and Phi6; the latter is an enveloped RNA virus used as a surrogate for coronaviruses. Three and 6 log10 reductions on respirators were considered effective for decontamination and disinfection, respectively. Results: UV-C administered as a 1-minute cycle in a UV-C box or a 30-minute cycle by a room decontamination device reduced contamination but did not meet criteria for decontamination of the viruses from all sites on the N95s. The high-level disinfection cabinet was effective for decontamination of the N95s and achieved disinfection with an extended 31-minute cycle. Dry heat at 70°C for 30 minutes was not effective for decontamination of the bacteriophages. Conclusions: UV-C could be useful to reduce contamination on N95 respirators. However, the UV-C technologies studied did not meet pre-established criteria for decontamination under the test conditions used. The high-level disinfection cabinet was more effective and met criteria for disinfection with an extended cycle. Keywords: N95 respirator; SARS-CoV-2; Ultraviolet-C; decontamination; peracetic acid.

Keywords

ultraviolet-c, decontamination, N95 respirator, peracetic acid, SARS-CoV-2

Publication Title

Pathogens and Immunity

Rights

© The Author(s). This is an open access article that lets others distribute, remix, tweak, and build upon your work for any lawful purpose, even commercially, as long as they credit you for the original creation. *Due to a template error on our pdfs, articles published from May 20, 2016 to June 24, 2022 incorrectly state the copyright is held by Pathogens and Immunity. Copyright of all articles is held by the authors of each article as noted in the above copyright policy.

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

FULL_TEXT (36 kB)

Included in

COVID-19 Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.