Document Type
Article
Publication Date
11-22-2021
Publication Title
Micromachines
Volume
12
Issue
11
College/School
Case School of Engineering
Grant
R44HL140739, R41HL151015, U54HL143541, T32HL134622
Funder
National Institutes of Health
Abstract
Paper-based microchip electrophoresis has the potential to bring laboratory electrophoresis tests to the point of need. However, high electric potential and current values induce pH and temperature shifts, which may affect biomolecule electrophoretic mobility thus decrease test reproducibility and accuracy of paper-based microfluidic electrophoresis. We have previously developed a microchip electrophoresis system, HemeChip, which has the capability of providing low-cost, rapid, reproducible, and accurate point-of-care (POC) electrophoresis tests for hemoglobin analysis. Here, we report the methodologies we implemented for characterizing HemeChip system pH and temperature during the development process, including utilizing commercially available universal pH indicator and digital camera pH shift characterization, and infrared camera characterizing temperature shift characterization. The characterization results demonstrated that pH shifts up to 1.1 units, a pH gradient up to 0.11 units/mm, temperature shifts up to 40 °C, and a temperature gradient up to 0.5 °C/mm existed in the system. Finally, we report an acid pre-treatment of the separation media, a cellulose acetate paper, mitigated both pH and temperature shifts and provided a stable environment for reproducible HemeChip hemoglobin electrophoresis separation.
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Recommended Citation
Hasan, Muhammad Noman; An, Ran; Akkus, Asya; Kharangate, Chirag; and Gurkan, Umut A., "Dynamic pH and Thermal Analysis of Paper-Based Microchip Electrophoresis" (2021). Faculty Scholarship. 7.
https://commons.case.edu/facultyworks/7