Files

Download

Download Full Text (1.2 MB)

Download FULL_TEXT (8 KB)

Description

We present and evaluate a dynamic model to predict blood oxygen saturation from respiration signals for use in automated sleep apnea detection. The model uses the averaged integral of a signal representing the respiration magnitude entering the lungs. This signal affects changes in blood oxygen saturation level through standard respiration processes. The results demonstrate that the approach provides reliable and robust estimation of blood oxygen saturation using only the respiration signal. Furthermore, the model may be incorporated in automated sleep apnea detection algorithms that can lead to inexpensive and reliable sleep apnea detection that do not require an overnight stay in the hospital for polysomnogram recordings.

Publication Date

4-12-2013

Publisher

Case Western Reserve University Research ShowCase 2013

City

Cleveland, OH

Keywords

Signal Processing, Sleep Apnea

Using Respiration Data to Predict Oxygen Saturation for Sleep Apnea Detection

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.