Document Type

Article

Publication Date

5-28-2024

Abstract

Abstract: Laser-powder bed fusion (L-PBF) is a popular additive manufacturing (AM) process with rich data sets coming from both in situ and ex situ sources. Data derived from multiple measurement modalities in an AM process capture unique features but often have different encoding methods; the challenge of data registration is not directly intuitive. In this work, we address the challenge of data registration between multiple modalities. Large data spaces must be organized in a machine-compatible method to maximize scientific output. FAIR (findable, accessible, interoperable, and reusable) principles are required to overcome challenges associated with data at various scales. FAIRified data enables a standardized format allowing for opportunities to generate automated extraction methods and scalability. We establish a framework that captures and integrates data from a L-PBF study such as radiography and high-speed camera video, linking these data sets cohesively allowing for future exploration.

Language

English

Publication Title

MRS Advances

Grant

DE-NA0004104

Rights

© The Author(s) 2024. This is an Open Access work distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Share

COinS
 

Manuscript Version

Final Publisher Version

 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.