Document Type

Article

Publication Date

2-15-2024

Abstract

Monitoring crop growth, soil conditions, and hydrological dynamics are imperative for sustainable agriculture and reduced environmental impacts. This interdisciplinary study integrates remote sensing, digital soil mapping, and hydrological data to elucidate intricate connections between these factors in the state of Ohio, USA. Advanced spatiotemporal analysis techniques were applied to key datasets, including the MODIS sensor satellite imagery, USDA crop data, soil datasets, Aster GDEM, and USGS stream gauge measurements. Vegetation indices derived from MODIS characterized crop-specific phenology and productivity patterns. Exploratory spatial data analysis show relationships of vegetation dynamics and soil properties, uncovering links between plant vigor, edaphic fertility, and nutrient distributions. Correlation analysis quantified these relationships and their seasonal evolution. Examination of stream gauge data revealed insights into spatiotemporal relationships of nutrient pollution and stream discharge. By synthesizing diverse geospatial data through cutting-edge data analytics, this work illuminated complex interactions between crop health, soil nutrients, and water quality in Ohio. The methodology and findings provide actionable perspectives to inform sustainable agricultural management and environmental policy. This study demonstrates the significant potential of open geospatial resources when integrated using a robust spatiotemporal framework. Integrating additional measurements and high-resolution data sources through advanced analytics and interactive visualizations could strengthen these insights.

Keywords

data integration, exploratory geospatial analysis, MODIS NDVI, nutrient distribution, soil-crop monitoring

Language

English

Publication Title

Journal of Geovisualization and Spatial Analysis

Grant

2133576

Rights

© The Author(s) 2024. This is an Open Access work distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Share

COinS
 

Manuscript Version

Final Publisher Version

 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.