Document Type
Article
Publication Date
1-30-2025
Abstract
Rhythmic motor behaviors controlled by neuromechanical systems, consisting of central neural circuitry, biomechanics, and sensory feedback, show efficiency in energy expenditure. The biomechanical elements (e.g., muscles) are modulated by peripheral neuromodulation which may improve their strength and speed properties. However, there are relatively few studies on neuromodulatory control of muscle function and metabolic mechanical efficiency in neuromechanical systems. To investigate the role of neuromodulation on the system's mechanical efficiency, we consider a neuromuscular model of motor patterns for feeding in the marine mollusk Aplysia californica. By incorporating muscle energetics and neuromodulatory effects into the model, we demonstrate tradeoffs in the energy efficiency of Aplysia's rhythmic swallowing behavior as a function of the level of neuromodulation. A robust efficiency optimum arises from an intermediate level of neuromodulation, and excessive neuromodulation may be inefficient and disadvantageous to an animal's metabolism. This optimum emerges from physiological constraints imposed upon serotonergic modulation trajectories on the energy efficiency landscape. Our results may lead to experimentally testable hypotheses of the role of neuromodulation in rhythmic motor control.
Keywords
central pattern generator, closed-loop control, energetics, muscle, neuromechanics, neuromodulation
Language
English
Publication Title
Journal of Theoretical Biology
Grant
DMS-1929284
Rights
© 2025 The Author(s). This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/BY-NC-ND/4.0/), which permits non-commercial copying and redistribution of the material in any medium or format, provided the original work is not changed in any way and is properly cited.
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Recommended Citation
Yu Z, Wang Y, Thomas PJ, Chiel HJ. Tradeoffs in the energetic value of neuromodulation in a closed-loop neuromechanical system. J Theor Biol. 2025 May 7;604:112050. doi: 10.1016/j.jtbi.2025.112050. Epub 2025 Jan 30. PMID: 39892775; PMCID: PMC12007176.
Manuscript Version
Final Publisher Version