Document Type
Article
Publication Date
2-14-2025
Abstract
Chemical separations are costly in terms of energy, time, and money. Separation methods are optimized with inefficient trial-and-error approaches that lack insight into the molecular dynamics that lead to the success or failure of a separation and, hence, ways to improve the process. We perform super-resolution imaging of fluorescent analytes in five different commercial liquid chromatography materials. Unexpectedly, we observe that chemical functionalization can block more than 50% of the material’s porous interior, rendering it inaccessible to small-molecule analytes. Only in situ imaging unveils the inaccessibility when compared to the industry-accepted ex situ characterization methods. Selectively removing some of the functionalization with solvent restores pore access without substantially altering the single-molecule kinetics that underlie the separation and agree with bulk chromatography measurements. Our molecular results determine that commercial “fully porous” stationary phases are overfunctionalized and provide an alternative avenue to characterize and direct separation material design from the bottom up.
Language
English
Publication Title
Science Advances
Rights
© 2025 The Authors. This is an Open Access work distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Recommended Citation
Monge Neria et al., Super-Resolution Imaging Reveals Resistance to Mass Transfer in Functionalized Stationary Phases. Sci. Adv. 11, eads0790 (2025)
Manuscript Version
Final Publisher Version