Document Type

Article

Publication Date

5-12-2025

Abstract

Studies support the role of hexamethylene bis-acetamide [HMBA] induced protein 1 (HEXIM1) as a tumor suppressor. We previously reported that the histone demethylase, KDM5B, inhibits the expression of HEXIM1, and KDM5B inhibitors (KDM5Bi) upregulate HEXIM1 expression. As a consequence, KDM5Bi inhibited cell proliferation, induced differentiation, potentiated sensitivity to cancer chemotherapy, and inhibited breast tumor metastasis. HEXIM1 is crucial for the regulation of triple-negative breast cancer (TNBC) phenotype by KDM5Bi. Type I Interferon (IFN-I) employs the immune system in the tumor microenvironment to restrict tumor growth. Moreover, therapeutic approaches (including mainstay chemotherapy) engage IFN-I signaling. We report herein that HEXIM1 and KDM5Bi induce IFN-I in TNBC. HEXIM1 and KDM5Bi downregulate the expression of polyribonucleotide nucleotidyltransferase 1 (PNPT1) resulting in the release of mitochondrial dsRNA (mt-dsRNA) into the cytoplasm. HEXIM1 also upregulates melanoma differentiation-associated protein 5 (MDA5), a cytoplasmic viral RNA receptor in the innate immune system. MDA5 is required for HEXIM1 and KDM5Bi to induce IFN-I and downstream signaling factors. We observed the augmentation of DNA damage response to Doxorubicin in the presence of KDM5Bi, and this action is a contributing factor in KDM5Bi-induced IFN-I. These actions of HEXIM1 and KDM5Bi occur independently of Cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (cGAS/STING), a major DNA sensing pathway and inducer of innate immunity. Via the upregulation of HEXIM1, KDM5Bi represent pharmacologically induced and tumor intrinsic IFN-I production that is cGAS/STING independent. This is critical because cGAS/STING induce an inflammatory response that promotes the survival of cancer cells, and STING is often impaired in malignant cancers.

Keywords

breast cancer, cancer therapy, histone demethylase, interferon, mitochondria

Language

English

Publication Title

FASEB Journal

Rights

© 2025 The Author(s). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/), which permits non-commercial copying and redistribution of the material in any medium or format, provided the original work is not changed in any way and is properly cited.

Share

COinS
 

Manuscript Version

Final Publisher Version

 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.