Document Type

Article

Publication Date

5-20-2025

Abstract

The vagus nerve, serving as a pivotal link between the brain and vital organs, regulates crucial physiological functions. It plays a central role in maintaining homeostasis within the body and must dynamically adapt to changing conditions such as anesthesia or sleep. While vagal tone, typically estimated indirectly from heart rate variability, has been extensively studied, direct measurement of vagal activity during sleep and anesthesia remains unreported to date. Recent technological advancements have facilitated the recording of vagus nerve activity in freely moving rodents using small, highly flexible carbon nanotube yarns. Consequently, it is now feasible to directly investigate vagal activity during events known to impact homeostasis, such as diurnal variations and anesthesia. In this study, we explore the relationship between anesthesia and vagus nerve activity by comparing the effects of 2% isoflurane anesthesia with activity in freely moving male Sprague Dawley rats. The findings reveal that 2% isoflurane anesthesia significantly suppresses vagus nerve activity, and normal activity levels do not resume until 2 h after the termination of the anesthesia supply. Additionally, we examine the influence of diurnal variations on vagus nerve activity and observe a notable presence of diurnal variations in vagal activity patterns. These results provide insights into the interaction among anesthesia, diurnal variations, and vagal tone, offering valuable understanding of the autonomic nervous system during critical physiological states.

Keywords

autonomic nervous system, carbon nanotube yarn electrodes, circadian rhythms, diurnal variation, isoflurane anesthesia, sample entropy, vagus nerve

Language

English

Publication Title

Journal of Neuroscience Research

Grant

5R01NS032845‐22

Rights

© 2025 The Author(s). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/), which permits non-commercial copying and redistribution of the material in any medium or format, provided the original work is not changed in any way and is properly cited.

Included in

Neurosciences Commons

Share

COinS
 

Manuscript Version

Final Publisher Version

 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.