Document Type

Article

Publication Date

12-11-2024

Abstract

The presence, location, and extent of prostate cancer is assessed by pathologists using H&E-stained tissue slides. Machine learning approaches can accomplish these tasks for both biopsies and radical prostatectomies. Deep learning approaches using convolutional neural networks (CNNs) have been shown to identify cancer in pathologic slides, some securing regulatory approval for clinical use. However, differences in sample processing can subtly alter the morphology between sample types, making it unclear whether deep learning algorithms will consistently work on both types of slide images. Our goal was to investigate whether morphological differences between sample types affected the performance of biopsy-trained cancer detection CNN models when applied to radical prostatectomies and vice versa using multiple cohorts (N = 1,000). Radical prostatectomies (N = 100) and biopsies (N = 50) were acquired from The University of Pennsylvania to train (80%) and validate (20%) a DenseNet CNN for biopsies Mᴮ radical prostatectomies Mᴿ and a combined dataset Mᴮ⁺ᴿ. On a tile level, Mᴮ and Mᴿ achieved F1 scores greater than 0.88 when applied to their own sample type but less than 0.65 when applied across sample types. On a whole-slide level, models achieved significantly better performance on their own sample type compared to the alternative model (p < 0.05) for all metrics. This was confirmed by external validation using digitized biopsy slide images from a clinical trial [NRG Radiation Therapy Oncology Group (RTOG)] (NRG/RTOG 0521, N = 750) via both qualitative and quantitative analyses (p < 0.05). A comprehensive review of model outputs revealed morphologically driven decision making that adversely affected model performance. Mᴮ appeared to be challenged with the analysis of open gland structures, whereas Mᴿ appeared to be challenged with closed gland structures, indicating potential morphological variation between the training sets. These findings suggest that differences in morphology and heterogeneity necessitate the need for more tailored, sample-specific (i.e. biopsy and surgical) machine learning models.

Keywords

biopsy, convolutional neural networks, deep learning, generalizability, interpretability, machine learning, morphology, prostate cancer, radical prostatectomy

Language

English

Publication Title

Journal of Pathology

Grant

1U01CA248226‐01

Rights

© 2024 The Author(s). This is an open access work distributed under the terms of the Creative Commons Attribution-Non-Commercial (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Creative Commons License

Creative Commons Attribution-NonCommercial 4.0 International License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

Share

COinS
 

Manuscript Version

Final Publisher Version

 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.