Document Type
Article
Publication Date
5-9-2024
Abstract
We demonstrate that the corrosion of AISI 1045 medium carbon steel and pure aluminum can be quantified by the turn-off fluorescent sensor Phen Green-SK (PGSK) in ethanol-based solutions. We first evaluate the dependence of the chelation enhanced quenching of PGSK on iron and aluminum ion concentrations. Subsequently, we apply PGSK to examine the anodic dissolution of metal corrosion. The observed time-dependent PGSK-quenching quantifies the corrosion rates of two metals over 24 h of immersion in ethanol-based solutions. The PGSK-based quantification of corrosion is compared to scanning electron microscopy and electrochemical techniques, including open circuit potential and Tafel extrapolation. The corrosion rates calculated from PGSK-quenching and Tafel extrapolation are in agreement, and both indicate a decrease in corrosion rates over 24 h. Our work shows PGSK can efficiently sense and quantify anodic corrosion reactions at metal interfaces, especially in organic solvents or other non-aqueous environments where the application of electrochemical techniques can be limited by the poor conductivity of the surrounding medium.
Language
English
Publication Title
Journal of the Electrochemical Society
Rights
© 2024 The Author(s). This is an Open Access work distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Recommended Citation
Lianlian Liu et al 2024. A Turn-Off Fluorescent Sensor for Metal Ions Quantifies Corrosion in an Organic Solvent. J. Electrochem. Soc. 171 051502
Manuscript Version
Final Publisher Version