Author ORCID Identifier
Document Type
Article
Publication Date
7-12-2018
Abstract
The production of synthetic ammonia remains dependent on the energy- and capital-intensive Haber-Bosch process. Extensive research in molecular catalysis has demonstrated ammonia production from dinitrogen, albeit at low production rates. Mechanistic understanding of dinitrogen reduction to ammonia continues to be delineated through study of molecular catalyst structure, as well as through understanding the naturally occurring nitrogenase enzyme. The transition to Haber-Bosch alternatives through robust, heterogeneous catalyst surfaces remains an unsolved research challenge. Catalysts for electrochemical reduction of dinitrogen to ammonia are a specific focus of research, due to the potential to compete with the Haber-Bosch process and reduce associated carbon dioxide emissions. However, limited progress has been made to date, as most electrocatalyst surfaces lack specificity towards nitrogen fixation. In this Review, we discuss the progress of the field in developing a mechanistic understanding of nitrogenase-promoted and molecular catalyst-promoted ammonia synthesis and provide a review of the state of the art and scientific needs for heterogeneous electrocatalysts.
Keywords
biocatalysis, electrocatalysis, heterogeneous catalysis, homogeneous catalysis
Publication Title
Nature Catalysis
Grant
EC-015996-02; DE-SC0016529; W911NF-14-1-0263
Funder
U.S. Department of Agriculture Small Business Innovation Research Program; U.S. Department of Energy, Office of Science, Basic Energy Sciences, Catalysis Science Program; Army Research Office Multidisciplinary University Research Initiative (MURI)
Rights
For articles published within the Springer Nature group of companies that have been archived into academic repositories such as this one, where a Springer Nature company holds copyright, or an exclusive license to publish, users may view, print, copy, download and text and data-mine the content, for the purposes of academic research, subject always to the full conditions of use. Any further use is subject to permission from Springer Nature. The conditions of use are not intended to override, should any national law grant further rights to any user. See full conditions of use.
Recommended Citation
Foster, S.L., Bakovic, S.I.P., Duda, R.D. et al. Catalysts for nitrogen reduction to ammonia. Nat Catal 1, 490–500 (2018). https://doi.org/10.1038/s41929-018-0092-7
Comments
This is a peer reviewed Accepted Manuscript of an article published in its final form in Nature Catalysis, available at: 10.1038/s41929-018-0092-7