Document Type

Article

Publication Date

4-17-2020

Abstract

Structural biology is entering an exciting time where many new high-resolution structures of large complexes and membrane proteins are determined regularly. These advances have been driven by over fifteen years of technology advancements, first in macromolecular crystallography, and recently in Cryo-electron microscopy. These structures are allowing detailed questions about functional mechanisms of the structures, and the biology enabled by these structures, to be addressed for the first time. At the same time, mass spectrometry technologies for protein structure analysis, “footprinting” studies, have improved their sensitivity and resolution dramatically and can provide detailed sub-peptide and residue level information for validating structures and interactions or understanding the dynamics of structures in the context of ligand binding or assembly. In this perspective, we review the use of protein footprinting to extend our understanding of macromolecular systems, particularly for systems challenging for analysis by other techniques, such as intrinsically disordered proteins, amyloidogenic proteins, and other proteins/complexes so far recalcitrant to existing methods. We also illustrate how the availability of high-resolution structural information can be a foundation for a suite of hybrid approaches to divine structure-function relationships beyond what individual techniques can deliver.

Keywords

footprinting, hybrid methods, mass spectrometry, proteins, structural biology

Publication Title

Journal of Molecular Biology

Rights

©2020 The Authors. Published by Elsevier Ltd.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.