Author ORCID Identifier

Mark R. Chance

Document Type

Article

Publication Date

8-1-1992

Abstract

X-ray edge and extended x-ray absorption fine structure (EXAFS) techniques provide powerful tools for analysis of local molecular structure of complexes in solution. We present EXAFS results for Co(I) B12 that demonstrate a four-coordinate (distorted) square-planar configuration. Comparison of EXAFS solutions for Co(I) and Co(II) B12 (collected previously; Sagi et al. 1990. J. Am. Chem. Soc. 112:8639–8644) suggest that modulation of the Co-N bond to the axial 5,6-dimethylbenzimidazole (DMB), in the absence of changes in Co-N (equatorial) bond distances, may be a key mechanism in promoting homolytic versus heterolytic cleavage. As Co-C bond homolysis occurs, the Co-N (DMB) bond becomes stronger. However, for heterolytic cleavage to occur, earlier electrochemical studies (D. Lexa and J. M. Saveant. 1976. J. Am. Chem. Soc. 98:2652–2658) and recent studies of methylcobalamin-dependent Clostridium thermoaceticum (Ragsdale et al. 1987. J. Biol. Chem. 262:14289–14297) suggest that removal of the DMB ligand (before Co-C bond cleavage) favors formation of the four-coordinate square-planar Co(I) species while inhibiting formation of the five-coordinate Co(II) B12 complex. This paper presents the first direct evidence that formation of the Co(I) B12 intermediate must involve breaking of the Co-N (DMB) bond.

Publication Title

Biophysical Journal

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.