Author ORCID Identifier

Roger H. French

Document Type

Article

Publication Date

11-13-2006

Abstract

Attractive van der Waals–London dispersion interactions between two half crystals arise from local physical property gradients within the interface layer separating the crystals. Hamaker coefficients and London dispersion energies were quantitatively determined for Σ5 and near-∑13 grain boundaries in SrTiO3 by analysis of spatially resolved valence electron energy-loss spectroscopy (VEELS) data. From the experimental data, local complex dielectric functions were determined, from which optical properties can be locally analyzed. Both local electronic structures and optical properties revealed gradients within the grain boundary cores of both investigated interfaces. The results show that even in the presence of atomically structured grain boundary cores with widths of less than 1nm, optical properties have to be represented with gradual changes across the grain boundary structures to quantitatively reproduce accurate van der Waals–London dispersion interactions. London dispersion energies of the order of 10% of the apparent interface energies of SrTiO3 were observed, demonstrating their significance in the grain boundary formation process. The application of different models to represent optical property gradients shows that long-range van der Waals–London dispersion interactions scale significantly with local, i.e., atomic length scale property variations.

Publication Title

Physical Review B

Rights

©2006 American Physical Society

Included in

Physics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.