Document Type

Article

Publication Date

12-10-2020

Abstract

Identifying emergent patterns of coronavirus disease 2019 (COVID-19) at the local level presents a geographic challenge. The need is not only to integrate multiple data streams from different sources, scales, and cadences, but to also identify meaningful spatial patterns in these data, especially in vulnerable settings where even small numbers and low rates are important to pinpoint for early intervention. This paper identifies a gap in current analytical approaches and presents a near-real time assessment of emergent disease that can be used to guide a local intervention strategy: Geographic Monitoring for Early Disease Detection (GeoMEDD). Through integration of a spatial database and two types of clustering algorithms, GeoMEDD uses incoming test data to provide multiple spatial and temporal perspectives on an ever changing disease landscape by connecting cases using different spatial and temporal thresholds. GeoMEDD has proven effective in revealing these different types of clusters, as well as the influencers and accelerators that give insight as to why a cluster exists where it does, and why it evolves, leading to the saving of lives through more timely and geographically targeted intervention.

Keywords

COVID-19 (disease), communicable diseases, coronavirus infections, geographic information system (GIS)

Publication Title

Scientific Reports

Rights

© The Author(s) 2020. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Included in

COVID-19 Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.