Document Type

Article

Publication Date

6-19-2018

DOI

10.1038/s41598-018-27566-z

Publication Title

Scientific Reports

Volume

8

Issue

1

College/School

Case School of Engineering

College/School

School of Medicine

Department/Center

Mechanical & Aerospace Engineering

Abstract

Leukocyte adhesion and extravasation are maximal near the transition from capillary to post-capillary venule, and are strongly influenced by a confluence of scale-dependent physical effects. Mimicking the scale of physiological vessels using in vitro microfluidic systems allows the capture of these effects on leukocyte adhesion assays, but imposes practical limits on reproducibility and reliable quantification. Here we present a microfluidic platform that provides multiple (54–512) technical replicates within a 15-minute sample collection time, coupled with an automated computer vision analysis pipeline that captures leukocyte adhesion probabilities as a function of shear and extensional stresses. We report that in post-capillary channels of physiological scale, efficient leukocyte adhesion requires erythrocytes forcing leukocytes against the wall, a phenomenon that is promoted by the transitional flow in post-capillary venule expansions and dependent on the adhesion molecule ICAM-1.

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.