Author ORCID Identifier

Mark R. Chance

Document Type

Article

Publication Date

12-13-2010

Abstract

Background: Colon cancer is driven by mutations in a number of genes, the most notorious of which is Apc. Though much of Apc's signaling has been mechanistically identified over the years, it is not always clear which functions or interactions are operative in a particular tumor. This is confounded by the presence of mutations in a number of other putative cancer driver (CAN) genes, which often synergize with mutations in Apc.Computational methods are, thus, required to predict which pathways are likely to be operative when a particular mutation in Apc is observed.Results: We developed a pipeline, PETALS, to predict and test likely signaling pathways connecting Apc to other CAN-genes, where the interaction network originating at Apc is defined as a "blossom," with each Apc-CAN-gene subnetwork referred to as a "petal." Known and predicted protein interactions are used to identify an Apc blossom with 24 petals. Then, using a novel measure of bimodality, the coexpression of each petal is evaluated against proteomic (2 D differential In Gel Electrophoresis, 2D-DIGE) measurements from the Apc1638N+/-mouse to test the network-based hypotheses.Conclusions: The predicted pathways linking Apc and Hapln1 exhibited the highest amount of bimodal coexpression with the proteomic targets, prioritizing the Apc-Hapln1 petal over other CAN-gene pairs and suggesting that this petal may be involved in regulating the observed proteome-level effects. These results not only demonstrate how functional 'omics data can be employed to test in silico predictions of CAN-gene pathways, but also reveal an approach to integrate models of upstream genetic interference with measured, downstream effects.

Keywords

gene ontology, association rule, driver gene, node perturbation, proteomic target

Publication Title

BMC Bioinformatics

Grant

P30CA043703

Rights

© 2010 Bebek et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Share

COinS
 

Manuscript Version

Final Publisher Version

 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.