Document Type

Article

Publication Date

3-10-2025

Abstract

Autoantibodies to ADAMTS13 are at the center of pathology of the immune-mediated thrombotic thrombocytopenic purpura. These autoantibodies can be either inhibitory (enzymatic function) or non-inhibitory, resulting in protein depletion. Under normal physiologic conditions, antibodies are generated in response to foreign antigens, which can include infectious agents; however, these antibodies may at times cross-react with self-epitopes. This is one of the possible mechanisms mediating formation of anti-ADAMTS13 autoantibodies. The process known as “antigenic mimicry” may be responsible for the development of these autoantibodies that recognize and bind cryptic epitopes in ADAMTS13, disrupting its enzymatic function over ultra large von Willebrand factor multimers, forming the seeds for platelet activation and microthrombi formation. In particular, specific amino acid sequences in ADAMTS13 may lead to conformational structures recognized by autoantibodies. Generation of these antibodies may occur more frequently among patients with a genetic predisposition. Conformational changes in ADAMTS13 between open and closed states can also constitute the critical change driving either interactions with autoantibodies or their generation. Nowadays, there is a growing understanding of the role that autoantibodies play in ADAMTS13 pathology. This knowledge, especially of functional qualitative differences among antibodies and the ADAMTS13 sequence specificity of such antibodies, may make possible the development of targeted therapeutic agents to treat the disease. This review aims to present what is known of autoantibodies against ADAMTS13 and how their structure and function result in disease.

Keywords

ADAMTS13, autoantibody, iTTP, specificity, structure, susceptibility, thrombotic thrombocytopenic purpura, von Willebrand factor

Language

English

Publication Title

Antibodies

Rights

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This is an Open Access work distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Share

COinS
 

Manuscript Version

Final Publisher Version

 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.