Author ORCID Identifier

Ryan A. Martin

Document Type

Article

Publication Date

5-31-2019

Abstract

Although studies increasingly disentangle phenotypic plasticity from evolutionary responses to environmental change, few test for transgenerational plasticity in this context. Here, we evaluate whether phenotypic divergence of acorn ants in response to urbanization is driven by transgenerational plasticity rather than evolution. F2 generation worker ants (offspring of laboratory-born queens) exhibited similar divergence among urban and rural populations as field-born worker ants, suggesting that evolutionary divergence rather than transgenerational plasticity was primarily responsible for shifts toward higher heat tolerance and diminished cold tolerance in urban acorn ants. Hybrid offspring from matings between urban and rural populations also indicated that evolutionary divergence was likely the primary mechanism underlying population differences in thermal tolerance. Specifically, thermal tolerance traits were not inherited either maternally or paternally in the hybrid pairings as would be expected for strong parental or grandparental effects mediated through a single sex. Urban–rural hybrid offspring provided further insight into the genetic architecture of thermal adaptation. Heat tolerance of hybrids more resembled the urban–urban pure type, whereas cold tolerance of hybrids more resembled the rural–rural pure type. As a consequence, thermal tolerance traits in this system appear to be influenced by dominance rather than being purely additive traits, and heat and cold tolerance might be determined by separate genes. Though transgenerational plasticity does not appear to explain divergence of acorn ant thermal tolerance, its role in divergence of other traits and across other urbanization gradients merits further study.

Keywords

adaptation, contemporary evolution, global change, maternal effect, speciation, thermal physiology, urban evolution

Language

English

Publication Title

Evolutionary Applications

Rights

© 2019 The Authors Evolutionary Applications Published by John Wiley & Sons Ltd. This is an Open Access work distributed under the terms of the Creative Commons Attribution Licence (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.