Author ORCID Identifier

Stacy S. McGaugh

Document Type

Article

Publication Date

2-20-2017

Abstract

We study the link between baryons and dark matter (DM) in 240 galaxies with spatially resolved kinematic data. Our sample spans 9 dex in stellar mass and includes all morphological types. We consider (1) 153 late-type galaxies (LTGs; spirals and irregulars) with gas rotation curves from the SPARC database, (2) 25 early-type galaxies (ETGs; ellipticals and lenticulars) with stellar and H i data from ATLAS or X-ray data from Chandra, and (3) 62 dwarf spheroidals (dSphs) with individual-star spectroscopy. We find that LTGs, ETGs, and "classical" dSphs follow the same radial acceleration relation: the observed acceleration (gobs) correlates with that expected from the distribution of baryons (gbar) over 4 dex. The relation coincides with the 1:1 line (no DM) at high accelerations but systematically deviates from unity below a critical scale of ∼10-10 m s-2. The observed scatter is remarkably small (≲0.13 dex) and largely driven by observational uncertainties. The residuals do not correlate with any global or local galaxy property (e.g., baryonic mass, gas fraction, and radius). The radial acceleration relation is tantamount to a natural law: when the baryonic contribution is measured, the rotation curve follows, and vice versa. Including ultrafaint dSphs, the relation may extend by another 2 dex and possibly flatten at m s-2, but these data are significantly more uncertain. The radial acceleration relation subsumes and generalizes several well-known dynamical properties of galaxies, like the Tully-Fisher and Faber-Jackson relations, the "baryon-halo" conspiracies, and Renzo's rule.

Keywords

cD, dark matter, galaxies: dwarf, galaxies: elliptical and lenticular, galaxies: irregular, galaxies: kinematics and dynamics, galaxies: spiral

Language

English

Publication Title

Astrophysical Journal

Rights

© The American Astronomical Society. All rights reserved. This content is free to access, download, and share. For all other uses, you must obtain permission to reuse content: https://journals.aas.org/article-charges-and-copyright/#AAS_material

Share

COinS
 

Manuscript Version

Final Publisher Version

 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.