Document Type

Article

Publication Date

6-5-2024

Abstract

Fatigue initiation in additively manufactured samples/parts often occurs at processed-induced defects such as lack-of-fusion (LoF), keyhole, or other morphological/microstructural defects that have unique characteristics and measurable qualities. Attempts at identifying and minimizing such defects have utilized optimized processing conditions along with in situ and ex situ characterization that includes metallography and/or X-ray computed tomography (XCT). This paper highlights the benefits of using fracture surface analyses to detect and quantify defects that may not be detected by metallography/XCT due to sectioning and resolution limits. In addition to using manual quantification of fatigue initiating LoF and keyhole defects on fracture surfaces, image-based machine learning using convolutional neural networks such as U-Net were also used to automate the process. Statistical analyses were used to identify the extreme cases of defects that initiated and accelerated fatigue and to model the distribution of defect size and shape characteristics to distinguish the type of defect. Initial results show agreement between trained machine learning models and ground truth data in defect segmentation, and the distributions of defect characteristics are distinguishable to particular process-induced defect types. This article was updated to correct Arafath Nifar to Arafath Nihar in the author list.

Language

English

Publication Title

JOM

Grant

MDS3-COE

Rights

This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.

Share

COinS
 

Manuscript Version

Final Publisher Version

 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.