Document Type

Article

Publication Date

4-24-2024

Abstract

Using Direct Ink Write (DIW) technology in a rapid and large-scale production requires reliable quality control for printed parts. Data streams generated during printing, such as print mechatronics, are massive and diverse which impedes extracting insights. In our study protocol approach, we developed a data-driven workflow to understand the behavior of sensor-measured X- and Y-axes positional errors with process parameters, such as print velocity and velocity control. We uncovered patterns showing that instantaneous changes in the velocity, when the build platform accelerates and decelerates, largely influence the positional errors, especially in the X-axis due to the hardware architecture. Since DIW systems share similar mechatronic inputs and outputs, our study protocol approach is broadly applicable and scalable across multiple systems. Graphical abstract: (Figure presented.)

Language

English

Publication Title

MRS Advances

Grant

LLNL-JRNL-859176

Rights

© The Author(s) 2024. This is an Open Access work distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Share

COinS
 

Manuscript Version

Final Publisher Version

 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.