Document Type

Article

Publication Date

2-20-2024

Abstract

Phase transformations are a challenging problem in materials science, which lead to changes in properties and may impact performance of material systems in various applications. We introduce a general framework for the analysis of particle growth kinetics by utilizing concepts from machine learning and graph theory. As a model system, we use image sequences of atomic force microscopy showing the crystallization of an amorphous fluoroelastomer film. To identify crystalline particles in an amorphous matrix and track the temporal evolution of the particle dispersion, we have developed quantitative methods of 2D analysis. 700 image sequences were analyzed using a neural network architecture, achieving 0.97 pixel-wise classification accuracy as a measure of the correctly classified pixels. The growth kinetics of isolated and impinged particles were tracked throughout time using these image sequences. The relationship between image sequences and spatiotemporal graph representations was explored to identify the proximity of crystallites from each other. The framework enables the analysis of all image sequences without the requirement of sampling for specific particles or timesteps for various materials systems.

Keywords

image analysis, particle growth kinetics, materials data science

Language

English

Publication Title

Integrating Materials and Manufacturing Innovation

Grant

DE-AC52-07NA27344

Rights

© The Author(s) 2024. This is an Open Access work distributed under the terms of the Creative Commons Attribution Licence (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Share

COinS
 

Manuscript Version

Final Publisher Version

 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.