Document Type

Article

Publication Date

2-10-2025

Abstract

Optical flow methods have been developed over the past two decades for application to particle image velocimetry (PIV) images with the goal of acquiring higher resolution measurements of the velocity field than conventional cross-correlation (CC)-based techniques. Numerous optical flow velocimetry (OFV) algorithms have been devised to solve the ill-posed optical flow problem, with various physics-inspired strategies to tailor them to fluid flows. While OFV can be applied to continuous scalar fields, it has demonstrated the most success on images of tracer particles, i.e. traditional planar PIV images. Compared to state-of-the-art CC algorithms, OFV methods have demonstrated an order of magnitude increase in spatial resolution and up to a factor of two improvement in overall accuracy when evaluated on synthetic data, at the cost of increased computational time. The requirements for particle seeding density, inter-frame displacement, and image quality are also more stringent for OFV methods compared to CC. OFV has been applied sparingly in experiments to date, but appears to offer the same advantages demonstrated on synthetic data. At this stage, OFV seems best suited to planar velocity measurements, although extensions to stereoscopic measurements have been demonstrated.

Keywords

optical flow, PIV, velocimetry

Language

English

Publication Title

Measurement Science and Technology

Grant

CBET-2306815

Rights

© 2025 The Author(s). This is an Open Access work distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Included in

Engineering Commons

Share

COinS
 

Manuscript Version

Final Publisher Version

 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.