Document Type

Article

Publication Date

3-5-2025

Abstract

The ability of PIV processing algorithms to accurately determine velocity vectors across the range of motion present in PIV images is characterized by the algorithm’s dynamic velocity range (DVR). Conventionally, the DVR of PIV is defined using the ratio between the maximum and minimum resolvable particle displacements, with the minimum based on the uncertainty in the location of a single particle in the optical system. In this work, it is demonstrated that this definition is inadequate in practice, as it ignores many factors which affect the accuracy of an algorithm when determining small displacements, and the error in vectors with small magnitudes in actual flows is often many times larger than the theoretical minimum. A more useful criterion for determining the DVR of a PIV setup is proposed that depends on conditional errors, using synthetic data to produce a known ground truth. The introduced error-based DVR accounts for the effect of multiple flow velocity scales present in a PIV experiment as well as multi-particle effects. It is found that the practical, error-based DVR of cross-correlation-based PIV is highly experiment-dependent and much lower than the widely accepted value of O102, typically O100-101. The findings from the synthetic data results are corroborated using experimental PIV data to approximate the DVR via a deviation-based approach when the ground truth is unknown.

Keywords

computer vision, data processing, digital and analog signal processing, image processing, motion detection, motion perception

Language

English

Publication Title

Experiments in Fluids

Grant

CBET-2306815

Rights

© 2025 The Author(s). This is an Open Access work distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Included in

Engineering Commons

Share

COinS
 

Manuscript Version

Final Publisher Version

 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.