Document Type

Article

Publication Date

2-6-2025

Abstract

This study assesses the capability of ChatGPT to generate finite element code for geotechnical engineering applications from a set of prompts. We tested three different initial boundary value problems using a hydro-mechanically coupled formulation for unsaturated soils, including the dissipation of excess pore water pressure through fluid mass diffusion in one-dimensional space, time-dependent differential settlement of a strip footing, and gravity-driven seepage. For each case, initial prompting involved providing ChatGPT with necessary information for finite element implementation, such as balance and constitutive equations, problem geometry, initial and boundary conditions, material properties, and spatiotemporal discretization and solution strategies. Any errors and unexpected results were further addressed through prompt augmentation processes until the ChatGPT-generated finite element code passed the verification/validation test. Our results demonstrate that ChatGPT required minimal code revisions when using the FEniCS finite element library, owing to its high-level interfaces that enable efficient programming. In contrast, the MATLAB code generated by ChatGPT necessitated extensive prompt augmentations and/or direct human intervention, as it involves a significant amount of low-level programming required for finite element analysis, such as constructing shape functions or assembling global matrices. Given that prompt engineering for this task requires an understanding of the mathematical formulation and numerical techniques, this study suggests that while a large language model may not yet replace human programmers, it can greatly assist in the implementation of numerical models.

Keywords

code generation, finite element method, large language model, prompt engineering, unsaturated soil

Language

English

Publication Title

International Journal for Numerical and Analytical Methods in Geomechanics

Grant

NRF‐2021R1A5A1032433

Rights

© 2025 The Author(s). This is an open access work distributed under the terms of the Creative Commons Attribution-Non-Commercial (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Creative Commons License

Creative Commons Attribution-NonCommercial 4.0 International License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

Share

COinS
 

Manuscript Version

Final Publisher Version

 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.